Skip to main content
Log in

Molecular mechanisms underpinning the silicon-selenium (Si-Se) interactome and cross-talk in stress-induced plant responses

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The global agriculture system remains vulnerable to several kinds of spatio-temporal abiotic and biotic stressors. At the molecular and physiological levels, the elimination of challenges associated with these stressors in plants has been intensively explored. The plants appear to have evolved with a multitude of physio-biochemical survival strategies, including a central signaling cross-talk channel that allows the plant to arbitrate between active growth and defensive pathways. Furthermore, exogenous administration of micronutrients such as silicon (Si) and selenium (Se) has been shown to improve plant defense responses under stressful situations. These micro-nutrients exhibited a large number of physio-biochemical responses throughout various plant systems and were found associated with pathways of stress signaling cross-talk. Several studies had provided pieces of evidence for the potential role of Si/Se in the induction of phytohormonal and anti-oxidant stress signaling mechanisms. Except for greater Se-toxicity at low concentrations when compared to Si, the individual and combined effects of Si/Se in many plants have shown similar induction routes. However, the effectiveness of Si/Se levels in different plant species differs greatly. A vast number of omics studies are currently being conducted in order to determine the exact molecular mechanisms through which Si/Se activation of the defense response could well be understood. This review aims to uncover the possible molecular convergent points for Si and Se actions as well as their potential cross-talk with stress signaling mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

MDA:

Melondialdehyde

SOD:

Superoxide dismutase

POD:

Peroxidase

CAT:

Catalase

POD:

peroxidase

GPX:

Glutathione peroxidase

GST:

Glutathione S-transferase

APX:

Ascorbate peroxidase

GR:

Glutathione reductase

AsA:

Ascorbic acid

PS-II:

Photo System II

TFs:

Transcription factors

ABA:

Abscisic acid

JA:

Jasmonic acid

SA:

Salicylic acid

GA:

Gibberellin

BR:

Brassinosteroid

ET:

Ethylene

ppm:

parts per million

GAPDH:

glyceraldehyde 3-phosphate dehydrogenase

DPPH:

2,2-diphenyl-1-picrylhydrazyl

DEGs:

differentially expressed genes

APS:

ATP sulfurylase

ACC:

aminocyclopropane-1-1-carboxylic acid

SAMDC:

S-adenosyl-L-methionine decarboxylase

APS:

ATP sulfurylase

APR:

adenosine 5′-phosphosulfate reductase

CBL:

cystathionine-β-synthase

CHS:

chalcone synthase

AREB:

abscisic acid-responsive element-binding protein

DDF2:

dwarf and delayed flowering

ERF:

ethylene response factor

HCAs:

Hydroxycinnamic acids

References

  • Abdalla MM (2011) Beneficial effects of diatomite on the growth, the biochemical contents and polymorphic DNA in Lupinus albus plants grown under water stress. Agriculture and Biology Journal of North America 2:207–220

  • Afton SE, Catron B, Caruso JA (2009) Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyperaccumulating Chlorophytum comosum, spider plant. J Exp Bot 60(4):1289–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ağar G, Türker M, Battal P, Erez ME (2006) Phytohormone levels in germinating seeds of Zea mays L. exposed to selenium and aflatoxines. Ecotoxicology 15(5):443–450

    Article  PubMed  Google Scholar 

  • Ahanger MA, Bhat JA, Siddiqui MH, Rinklebe J, Ahmad P (2020) Integration of silicon and secondary metabolites in plants: a significant association in stress tolerance. J Exp Bot 71(21):6758–6774

    Article  CAS  PubMed  Google Scholar 

  • Ahanger MA, Tomar NS, Tittal M, Argal S, Agarwal R (2017) Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol Mol Biology Plants 23(4):731–744

    Article  Google Scholar 

  • Ahmad P, Ahanger MA, Alam P, Alyemeni MN, Wijaya L, Ali S, Ashraf M (2019) Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. J Plant Growth Regul 38(1):70–82

    Article  CAS  Google Scholar 

  • Al Murad M, Khan AL, Muneer S (2020) Silicon in horticultural crops: cross-talk, signaling, and tolerance mechanism under salinity stress. Plants 9(4):460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-aghabary K, Zhu Z, Shi Q (2005) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27(12):2101–2115

    Article  Google Scholar 

  • Alamri S, Hu Y, Mukherjee S, Aftab T, Fahad S, Raza A, Ahmad M, Siddiqui MH (2020) Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. Plant Physiol Biochem 157:47–59

    Article  CAS  PubMed  Google Scholar 

  • Alamri S, Siddiqui MH, Mukherjee S, Kumar R, Kalaji HM, IrfanM, Minkina T, Rajput VD (2022) Molybdenum-induced endogenous nitric oxide (NO) signaling coordinately enhances resilience through chlorophyll metabolism, osmolyte accumulation and antioxidant system in arsenate stressed-wheat (Triticum aestivum L.) seedlings. Environ Pollut 292:118268

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Afzal S, Parveen A, Kamran M, Javed MR, Abbasi GH, Malik Z, Riaz M, Ahmad S, Chattha MS, Ali M (2021) Silicon mediated improvement in the growth and ion homeostasis by decreasing Na + uptake in maize (Zea mays L.) cultivars exposed to salinity stress. Plant Physiol Biochem 158:208–218

    Article  CAS  PubMed  Google Scholar 

  • Almutairi ZM (2016) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. Plant Omics 9(1):106–114

    CAS  Google Scholar 

  • Alon M, Malka O, Eakteiman G, Elbaz M, Moyal Ben Zvi M, Vainstein A, Morin S (2013) Activation of the Phenylpropanoid pathway in Nicotiana tabacum improves the performance of the whitefly Bemisia tabaci via reduced jasmonate signaling. PLoS ONE 8(10):e76619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsaeedi A, Elgarawani MM, Alshaal T, Elhawat N (2022) Silicon-and nanosilicon-mediated drought and waterlogging stress tolerance in plants. In Silicon and Nano-silicon in Environmental Stress Management and Crop Quality Improvement. Academic, Cambridge, pp 121–152

  • Alves LR, Dos Reis AR, Prado ER, Lavres J, Pompeu GB, Azevedo RA, Gratão PL (2019) New insights into cadmium stressful-conditions: Role of ethylene on selenium-mediated antioxidant enzymes. Ecotoxicol Environ Saf 186:109747

    Article  CAS  PubMed  Google Scholar 

  • Alyemeni MN, Ahanger MA, Wijaya L, Alam P, Bhardwaj R, Ahmad P (2018) Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. Protoplasma 255(2):459–469

    Article  CAS  PubMed  Google Scholar 

  • Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S (2020) Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol Biochem 156:64–77

    Article  CAS  PubMed  Google Scholar 

  • Ashraf MA, Akbar A, Parveen A, Rasheed R, Hussain I, Iqbal M (2018) Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiol Biochem 123:268–280

    Article  CAS  PubMed  Google Scholar 

  • Badawy SA, Zayed BA, Bassiouni S, Mahdi AH, Majrashi A, Ali EF, Seleiman MF (2021) Influence of nano silicon and nano selenium on root characters, growth, ion selectivity, yield, and yield components of rice (Oryza sativa L.) under salinity conditions. Plants 10(8):1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Roychoudhury A (2018) Role of beneficial trace elements in salt stress tolerance of plants. Plant nutrients and abiotic stress tolerance. Springer, Singapore, pp 377–390

    Chapter  Google Scholar 

  • Bocchini M, D’Amato R, Ciancaleoni S, Fontanella MC, Palmerini CA, Beone GM, Onofri A, Negri V, Marconi G, Albertini E, Businelli D (2018) Soil selenium (Se) biofortification changes the physiological, biochemical and epigenetic responses to water stress in Zea mays L. by inducing a higher drought tolerance. Front Plant Sci 9:389

    Article  PubMed  PubMed Central  Google Scholar 

  • Borbély P, Molnár Á, Valyon E, Ördög A, Horváth-Boros K, Csupor D, Fehér A, Kolbert Z (2021) The effect of foliar selenium (Se) treatment on growth, photosynthesis, and oxidative-nitrosative signalling of Stevia rebaudiana leaves. Antioxidants 10(1):72

    Article  PubMed  PubMed Central  Google Scholar 

  • Both EB, Stonehouse GC, Lima LW, Fakra SC, Aguirre B, Wangeline AL, Xiang J, Yin H, Jókai Z, Soós Á, Dernovics M (2020) Selenium tolerance, accumulation, localization and speciation in a Cardamine hyperaccumulator and a non-hyperaccumulator. Sci Total Environ 10:135041

    Article  Google Scholar 

  • Çakır Ö, Turgut-Kara N, Arı Ş, Zhang B (2015) De novo transcriptome assembly and comparative analysis elucidate complicated mechanism regulating Astragalus chrysochlorus response to selenium stimuli. PLoS ONE 10(10):e0135677

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao D, Liu Y, Ma L, Jin X, Guo G, Tan R, Liu Z, Zheng L, Ye F, Liu W (2018) Transcriptome analysis of differentially expressed genes involved in selenium accumulation in tea plant (Camellia sinensis). PLoS One 13(6):e0197506

  • Chain F, Côté-Beaulieu C, Belzile F, Menzies JG, Bélanger RR (2009) A comprehensive transcriptomic analysis of the effect of silicon on wheat plants under control and pathogen stress conditions. Mol Plant Microbe Interact 22(11):1323–1330

    Article  CAS  PubMed  Google Scholar 

  • Challabathula D, Analin B, Mohanan A, Bakka K (2022) Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and-tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport. J Plant Physiol 268:153583

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Liang X, Gong X, Reinfelder JR, Chen H, Sun C, Liu X, Zhang S, Li F, Liu C, Zhao J (2021) Comparative physiological and transcriptomic analyses illuminate common mechanisms by which silicon alleviates cadmium and arsenic toxicity in rice seedlings. J Environ Sci 109:88–101

    Article  CAS  Google Scholar 

  • Chen Z, Xu J, Xu Y, Wang K, Cao B, Xu K (2019) Alleviating effects of silicate, selenium, and microorganism fertilization on lead toxicity in ginger (Zingiber officinale Roscoe). Plant Physiol Biochem 145:153–163

    Article  CAS  PubMed  Google Scholar 

  • Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Bélanger RR (2019) The controversies of silicon’s role in plant biology. New Phytol 221(1):67–85

    Article  PubMed  Google Scholar 

  • Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Botany 100(7):1383–1389

    Article  CAS  Google Scholar 

  • Dallagnol LJ, Rodrigues FA, Pascholati SF, Fortunato AA, Camargo LE (2015) Comparison of root and foliar applications of potassium silicate in potentiating post-infection defences of melon against powdery mildew. Plant Pathol 64(5):1085–1093

    Article  CAS  Google Scholar 

  • Das S, Majumder B, Biswas AK (2022) Comparative study on the influence of silicon and selenium to mitigate arsenic induced stress by modulating TCA cycle, GABA, and polyamine synthesis in rice seedlings. Ecotoxicology 5:1–22

    Google Scholar 

  • Ding Y, Feng R, Wang R, Guo J, Zheng X (2014) A dual effect of Se on Cd toxicity: evidence from plant growth, root morphology and responses of the antioxidative systems of paddy rice. Plant Soil 375(1):289–301

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Belliraj N, Bossmann SH, Prasad PV (2018) High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega 3(3):2479–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Mehdawi AF, Jiang Y, Guignardi ZS, Esmat A, Pilon M, Pilon-Smits EA, Schiavon M (2018) Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/selenate transporters in selenium hyperaccumulator and nonhyperaccumulator Brassicaceae. New Phytol 217(1):194–205

    Article  PubMed  Google Scholar 

  • El-Saadony MT, Desoky ES, Saad AM, Eid RS, Selem E, Elrys AS (2021) Biological silicon nanoparticles improve Phaseolus vulgaris L. yield and minimize its contaminant contents on a heavy metals-contaminated saline soil. J Environ Sci 106:1–4

    Article  CAS  Google Scholar 

  • Etesami H (2018) Can interaction between silicon and plant growth promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants? Agric Ecosyst Environ 253:98–112

    Article  CAS  Google Scholar 

  • Farooq MA, Islam F, Ayyaz A, Chen W, Noor Y, Hu W, Hannan F, Zhou W (2022) Mitigation effects of exogenous melatonin-selenium nanoparticles on arsenic-induced stress in Brassica napus. Environ Pollut 292:118473

    Article  CAS  PubMed  Google Scholar 

  • Feng RW, Wei CY (2012) Antioxidative mechanisms on selenium accumulation in Pteris vittata L., a potential selenium phytoremediation plant. Plant Soil Environ 58(3):105–110

    Article  CAS  Google Scholar 

  • Frew A, Weston LA, Reynolds OL, Gurr GM (2018) The role of silicon in plant biology: a paradigm shift in research approach. Ann Bot 121(7):1265–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Zhou J, Liu H, Zhang W, Hu Y, Liang J, Zhou J (2018) Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Sci Total Environ 631:1100–1108

    Article  PubMed  Google Scholar 

  • Ghosh S, Adhikari S, Adhikari A, Hossain Z (2022) Contribution of plant miRNAome studies towards understanding heavy metal stress responses: Current status and future perspectives. Environ Exp Bot 194:104705

    Article  CAS  Google Scholar 

  • Ghouri F, Ali Z, Naeem M, Ul-Allah S, Babar M, Baloch FS, Chattah WS, Shahid MQ (2021) Effects of silicon and selenium in alleviation of drought stress in rice. Silicon 21:1–9

    Google Scholar 

  • Gichner T, Patková Z, Száková J, Žnidar I, Mukherjee A (2008) DNA damage in potato plants induced by cadmium, ethyl methanesulphonate and γ-rays. Environ Exp Bot 62(2):113–119

    Article  CAS  Google Scholar 

  • Golob A, Stibilj V, Kreft I, Vogel-Mikuš K, Gaberščik A, Germ M (2018) Selenium treatment alters the effects of UV radiation on chemical and production parameters in hybrid buckwheat. Acta Agric Scand Sect B Soil Plant Sci 68(1):5–15

    CAS  Google Scholar 

  • Guo K, Yao Y, Yang M, Li Y, Wu B, Lin X (2020) Transcriptome sequencing and analysis reveals the molecular response to selenium stimuli in Pueraria lobata (Willd.) Ohwi. Peer J 8:e8768

    Article  PubMed  PubMed Central  Google Scholar 

  • Haddad C, Trouverie J, Arkoun M, Yvin JC, Caïus J, Brunaud V, Laîné P, Etienne P (2019) Silicon supply affects the root transcriptome of Brassica napus L. Planta 249(5):1645–1651

    Article  CAS  PubMed  Google Scholar 

  • Hamayun M, Sohn EY, Khan SA, Shinwari ZK, Khan AL, Lee IJ (2010) Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.). Pak J Botany 42(3):1713–1722

  • Hasan M, Cheng Y, Kanwar MK, Chu XY, Ahammed GJ, Qi ZY (2017) Responses of plant proteins to heavy metal stress—a review. Front Plant Sci 8:1492

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Al Mahmud J, Nahar K, Fujita M (2020) Selenium in plants: Boon or bane? Environ Exp Bot 178:104170

    Article  CAS  Google Scholar 

  • Howladar SM, Al-Robai SA, Al-Zahrani FS, Howladar MM, Aldhebiani AY (2018) Silicon and its application method effects on modulation of cadmium stress responses in Triticum aestivum (L.) through improving the antioxidative defense system and polyamine gene expression. Ecotoxicol Environ Saf 159:143–152

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Li M, Rizwan M, Dai Z, Yuan Y, Hossain MM, Cao M, Xiong S, Tu S (2021) Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants. J Hazard Mater 5:123393

    Article  Google Scholar 

  • Hussain B, Lin Q, Hamid Y, Sanaullah M, Di L, Khan MB, He Z, Yang X (2020) Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Sci Total Environ 712:136497

    Article  CAS  PubMed  Google Scholar 

  • Hussain M, Khan TA, Yusuf M, Fariduddin Q (2019) Silicon-mediated role of 24-epibrassinolide in wheat under high-temperature stress. Environ Sci Pollut Res 26(17):17163–17172

    Article  CAS  Google Scholar 

  • Jiang N, Fan X, Lin W, Wang G, Cai K (2019) Transcriptome analysis reveals new insights into the bacterial wilt resistance mechanism mediated by silicon in tomato. Int J Mol Sci 20(3):761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Yang J, Liu C, Chen Z, Yao Z, Cao S (2020) Overexpression of ethylene response factor ERF96 gene enhances selenium tolerance in Arabidopsis. Plant Physiol Biochem 149:294-300

  • Jiao L, Zhang L, Zhang Y, Wang R, Lu B, Liu X (2022) Transcriptome analysis provides new insight into the distribution and transport of selenium and its associated metals in selenium-rich rice. Environ Pollut 9:118980

    Article  Google Scholar 

  • Jing XQ, Zhou MR, Nie XM, Zhang L, Shi PT, Shalmani A, Miao H, Li WQ, Liu WT, Chen KM (2021) OsGSTU6 contributes to cadmium stress tolerance in rice by involving in intracellular ROS homeostasis. J Plant Growth Regul 40(3):945–961

    Article  CAS  Google Scholar 

  • Kafi M, Nabati J, Ahmadi-Lahijani MJ, Oskoueian A (2021) Silicon compounds and potassium sulfate improve salinity tolerance of potato plants through instigating the defense mechanisms, cell membrane stability, and accumulation of osmolytes. Commun Soil Sci Plant Anal 52(8):843–858

    Article  CAS  Google Scholar 

  • Kalteh M, Alipour ZT, Ashraf S, Marashi Aliabadi M, Falah Nosratabadi A (2018) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4(3). https://doi.org/10.22034/JCHR.2018.544075

  • Kamran M, Parveen A, Ahmar S, Malik Z, Hussain S, Chattha MS, Saleem MH, Adil M, Heidari P, Chen JT (2020) An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int J Mol Sci 21(1):148

    Article  CAS  Google Scholar 

  • Kapoor B, Kumar P, Sharma R, Kumar A (2021) Regulatory interactions in phytohormone stress signaling implying plants resistance and resilience mechanisms. J Plant Biochem Biotechnol 30(4):813–828

    Article  CAS  Google Scholar 

  • Karimi R, Ghabooli M, Rahimi J, Amerian M (2020) Effects of foliar selenium application on some physiological and phytochemical parameters of Vitis vinifera L. cv. Sultana under salt stress. J Plant Nutr 43(14):2226–2242

    Article  CAS  Google Scholar 

  • Kaur S, Kaur N, Siddique KH, Nayyar H (2016) Beneficial elements for agricultural crops and their functional relevance in defence against stresses. Arch Agron Soil Sci 62(7):905–920

    Article  Google Scholar 

  • Khai HD, Mai NT, Tung HT, Luan VQ, Cuong DM, Ngan HT, Chau NH, Buu NQ, Vinh NQ, Dung DM, Nhut DT (2022) Selenium nanoparticles as in vitro rooting agent, regulates stomata closure and antioxidant activity of gerbera to tolerate acclimatization stress. Plant Cell Tissue Organ Cult 10:1–6

    Google Scholar 

  • Khan A, Bilal S, Khan AL, Imran M, Al-Harrasi A, Al-Rawahi A, Lee IJ (2020a) Silicon-mediated alleviation of combined salinity and cadmium stress in date palm (Phoenix dactylifera L.) by regulating physio-hormonal alteration. Ecotoxicol Environ Saf 188:109885

  • Khan A, Bilal S, Khan AL, Imran M, Shahzad R, Al-Harrasi A, Al-Rawahi A, Al-Azhri M, Mohanta TK, Lee IJ (2020b) Silicon and gibberellins: synergistic function in harnessing ABA signaling and heat stress tolerance in date palm (Phoenix dactylifera L.). Plants 9(5):620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan A, Khan AL, Imran M, Asaf S, Kim YH, Bilal S, Numan M, Al-Harrasi A, Al-Rawahi A, Lee IJ (2020c) Silicon-induced thermotolerance in Solanum lycopersicum L. via activation of antioxidant system, heat shock proteins, and endogenous phytohormones. BMC Plant Biol 20(1):1–8

    Article  Google Scholar 

  • Khan MIR, Ashfaque F, Chhillar H, Irfan M, Khan NA (2021) The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators. Plant Physiol Biochem 162:36–47

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Jahan B, AlAjmi MA, Rehman MT, Iqbal N, Irfan M, Sehar Z, Khan NA (2021) Crosstalk of plant growth regulators protects photosynthetic performance from arsenic damage by modulating defense systems in rice. Ecotoxicol Environ Saf 222:112535

    Article  CAS  PubMed  Google Scholar 

  • Khattab H, Alatawi A, Abdulmajeed A, Emam M, Hassan H (2021) Roles of Si and SiNPs in improving thermotolerance of wheat photosynthetic machinery via upregulation of PsbH, PsbB and PsbD genes encoding PSII core proteins. Horticulturae 7:16. https://doi.org/10.3390/horticulturae7020016

  • Khattab HI, Emam MA, Emam MM, Helal NM, Mohamed MR (2014) Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice. Biologia Plantarum 58:265–73

  • Kim YH, Khan AL, Waqas M, Jeong HJ, Kim DH, Shin JS, Kim JG, Yeon MH, Lee IJ (2014) Regulation of jasmonic acid biosynthesis by silicon application during physical injury to Oryza sativa L. J Plant Res 27:525–532

  • Kleiber T, Borowiak K, Kosiada T, Breś W, Ławniczak B (2020) Application of selenium and silicon to alleviate short-term drought stress in French marigold (Tagetes patula L.) as a model plant species. Open Chem 18(1):1468–1480

    Article  CAS  Google Scholar 

  • Kolbert Z, Molnár Á, Feigl G, Van Hoewyk D (2019) Plant selenium toxicity: Proteome in the crosshairs. J Plant Physiol 232:291–300

    Article  CAS  PubMed  Google Scholar 

  • Koyro HW (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ Exp Bot 56(2):136–146

    Article  CAS  Google Scholar 

  • Lanza MG, Dos Reis AR (2021) Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiol Biochem 164:27–43

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Sohn EY, Hamayun M, Yoon JY, Lee IJ (2010) Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry systems 80:333–340

  • Lee J, Hanh Nguyen H, Park Y, Lin J, Hwang I (2022) Spatial regulation of RBOHD via AtECA4-mediated recycling and clathrin‐mediated endocytosis contributes to ROS accumulation during salt stress response but not flg22‐induced immune response. Plant J 109(4):816–830

    Article  CAS  PubMed  Google Scholar 

  • Lehotai N, Kolbert Z, Pető A, Feigl G, Ördög A, Kumar D, Tari I, Erdei L (2012) Selenite-induced hormonal and signalling mechanisms during root growth of Arabidopsis thaliana L. J Exp Bot 63(15):5677–5687

    Article  CAS  PubMed  Google Scholar 

  • Li HF, McGrath SP, Zhao FJ (2007) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178(1):92–102

    Article  Google Scholar 

  • Li N, Feng A, Liu N, Jiang Z, Wei S (2020) Silicon application improved the yield and nutritional quality while reduced cadmium concentration in rice. Environ Sci Pollut Res 27(16):20370–20379

    Article  CAS  Google Scholar 

  • Li Z, Song Z, Yan Z, Hao Q, Song A, Liu L, Yang X, Xia S, Liang Y (2018) Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis. Agron Sustain Dev 38(3):1–9

    Article  Google Scholar 

  • Lin L, Zhou W, Dai H, Cao F, Zhang G, Wu F (2012) Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J Hazard Mater 235:343–351

    Article  PubMed  Google Scholar 

  • Liu P, Yin L, Wang S, Zhang M, Deng X, Zhang S, Tanaka K (2015) Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ Exp Bot 111:42–51

    Article  CAS  Google Scholar 

  • Liu T, Liu X, Zhou R, Chen H, Zhang H, Zhang B (2021) De novo Transcriptome Assembly and Comparative Analysis Highlight the Primary Mechanism Regulating the Response to Selenium Stimuli in Oats (Avena sativa L.). Front Plant Sci 12:1220

    Google Scholar 

  • Liu X, Huang Z, Li Y, Xie W, Li W, Tang X, Ashraf U, Kong L, Wu L, Wang S, Mo Z (2020) Selenium-silicon (Se-Si) induced modulations in physio-biochemical responses, grain yield, quality, aroma formation and lodging in fragrant rice. Ecotoxicol Environ Saf 196:110525

    Article  CAS  PubMed  Google Scholar 

  • Łukaszewicz S, Politycka B, Borowiak-Sobkowiak B (2020) Effect of selenium on alleviating oxidative stress in pea leaves caused by pea aphid feeding. J Plant Prot Res 83–94

  • Maghsoudi K, Arvin MJ, Ashraf M (2020) Mitigation of arsenic toxicity in wheat by the exogenously applied salicylic acid, 24-epi-brassinolide and silicon. J Soil Sci Plant Nutr 20(2):577–588

    Article  CAS  Google Scholar 

  • Mangal V, Lal MK, Tiwari RK, Altaf MA, Sood S, Kumar D, Bharadwaj V, Singh B, Singh RK, Aftab T (2022) Molecular Insights into the Role of Reactive Oxygen, Nitrogen and Sulphur Species in Conferring Salinity Stress Tolerance in Plants. J Plant Growth Regul 10:1–21

    Google Scholar 

  • Manivannan A, Ahn YK (2017) Silicon regulates potential genes involved in major physiological processes in plants to combat stress. Front Plant Sci 3:1346

    Article  Google Scholar 

  • Meharg C, Meharg AA (2015) Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ Exp Bot 120:8–17

    Article  CAS  Google Scholar 

  • Moradtalab N, Weinmann M, Walker F, Höglinger B, Ludewig U, Neumann G (2018) Silicon improves chilling tolerance during early growth of maize by effects on micronutrient homeostasis and hormonal balances. Front Plant Sci 26:420

    Article  Google Scholar 

  • Mousavi S, Regni L, Bocchini M, Mariotti R, Cultrera NG, Mancuso S, Googlani J, Chakerolhosseini MR, Guerrero C, Albertini E, Baldoni L (2019) Physiological, epigenetic and genetic regulation in some olive cultivars under salt stress. Sci Rep 9(1):1–7

    Article  Google Scholar 

  • Moussa HR (2006) Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). Int J Agric Biol 8(3):293–297

    CAS  Google Scholar 

  • Mozafariyan M, Kamelmanesh MM, Hawrylak-Nowak B (2016) Ameliorative effect of selenium on tomato plants grown under salinity stress. Arch Agron Soil Sci 62(10):1368–1380

    Article  CAS  Google Scholar 

  • Muhammad HM, Abbas A, Ahmad R (2022) Fascinating Role of Silicon Nanoparticles to Mitigate Adverse Effects of Salinity in Fruit Trees: a Mechanistic Approach. Silicon 15:1–8

    Google Scholar 

  • Pandey C, Gupta M (2015) Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J Hazard Mater 287:384–391

    Article  CAS  PubMed  Google Scholar 

  • Patel M, Fatnani D, Parida AK (2021) Silicon-induced mitigation of drought stress in peanut genotypes (Arachis hypogaea L.) through ion homeostasis, modulations of antioxidative defense system, and metabolic regulations. Plant Physiol Biochem 166:290–313

    Article  CAS  PubMed  Google Scholar 

  • Pazurkiewicz-Kocot KR, Galas WI, Kita AN (2003) The effect of selenium on the accumulation of some metals in Zea mays L. plants treated with indole-3-acetic acid. Cell Mol Biology Lett 8(1):97–104

    CAS  Google Scholar 

  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106–115

  • Pereira AS, Dorneles AO, Bernardy K, Sasso VM, Bernardy D, Possebom G, Rossato LV, Dressler VL, Tabaldi LA (2018) Selenium and silicon reduce cadmium uptake and mitigate cadmium toxicity in Pfaffia glomerata (Spreng.) Pedersen plants by activation antioxidant enzyme system. Environ Sci Pollut Res 25(19):18548–18558

    Article  CAS  Google Scholar 

  • Perry CC (2009) An overview of silica in biology: its chemistry and recent technological advances. Biosilica in Evolution, Morphogenesis, and Nanobiotechnology, 295–313

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 18:69

    Google Scholar 

  • Prins CN, Hantzis LJ, Quinn CF, Pilon-Smits EA (2011) Effects of selenium accumulation on reproductive functions in Brassica juncea and Stanleya pinnata J Exp Bot 62(15):5633–5640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranjan A, Sinha R, Bala M, Pareek A, Singla-Pareek SL, Singh AK (2021) Silicon-mediated abiotic and biotic stress mitigation in plants: Underlying mechanisms and potential for stress resilient agriculture. Plant Physiol Biochem 163:15–25

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD, Baker AJ, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2018) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218(2):407–411

    Article  PubMed  Google Scholar 

  • Rizvi A, Zaidi A, Ameen F, Ahmed B, AlKahtani MD, Khan MS (2020) Heavy metal induced stress on wheat: phytotoxicity and microbiological management. RSC Adv 10(63):38379–38403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163(8):847–855

    Article  CAS  PubMed  Google Scholar 

  • Santiago FE, Silva ML, Cardoso AA, Duan Y, Guilherme LR, Liu J, Li L (2020) Biochemical basis of differential selenium tolerance in arugula (Eruca sativa Mill.) and lettuce (Lactuca sativa L.). Plant Physiol Biochem 157:328–338

    Article  CAS  PubMed  Google Scholar 

  • Sarkar AK, Sadhukhan S (2022) Imperative role of trehalose metabolism and trehalose-6‐phosphate signalling on salt stress responses in plants. Physiol Plant 10:e13647

    Google Scholar 

  • Sattar A, Cheema MA, Sher A, Ijaz M, Ul-Allah S, Nawaz A, Abbas T, Ali Q (2019) Physiological and biochemical attributes of bread wheat (Triticum aestivum L.) seedlings are influenced by foliar application of silicon and selenium under water deficit. Acta Physiol Plant 41(8):1–1

  • Schiavon M, Pilon-Smits EA (2017) The fascinating facets of plant selenium accumulation–biochemistry, physiology, evolution and ecology. New Phytol 213(4):1582–1596

    Article  CAS  PubMed  Google Scholar 

  • Shalaby TA, Abd-Alkarim E, El-Aidy F, Hamed ES, Sharaf-Eldin M, Taha N, El-Ramady H, Bayoumi Y, Dos Reis AR (2021) Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicol Environ Saf 212:111962. https://doi.org/10.1016/j.ecoenv.2021.111962

  • Shalmani A, Ullah U, Muhammad I, Zhang D, Sharif R, Jia P, Saleem N, Gul N, Rakhmanova A, Tahir MM, Chen KM (2021) The TAZ domain-containing proteins play important role in the heavy metals stress biology in plants. Environ Res 197:111030

    Article  CAS  PubMed  Google Scholar 

  • Sharifi P, Amirnia R, Torkian M, Bidabadi SS (2021) Protective role of exogenous selenium on salinity-stressed Stachys byzantine plants. J Soil Sci Plant Nutr 21(4):2660–2672

    Article  CAS  Google Scholar 

  • Sharma M, Irfan M, Kumar A, Kumar P, Datta A (2021) Recent insights into plant circadian clock response against abiotic stress. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10531-y

    Article  Google Scholar 

  • Shekari F, Abbasi A, Mustafavi SH (2017) Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition. J Saudi Soc Agric Sci 16(4):367–374

    Google Scholar 

  • Shetty R, Jensen B, Shetty NP, Hansen M, Hansen CW, Starkey KR, Jørgensen HJ (2011) Silicon induced resistance against powdery mildew of roses caused by Podosphaera pannosa. Plant Pathol 61(1):120–131

    Article  Google Scholar 

  • Siddiqui H, Yusuf M, Faraz A, Faizan M, Sami F, Hayat S (2018) 24-Epibrassinolide supplemented with silicon enhances the photosynthetic efficiency of Brassica juncea under salt stress. South Afr J Bot 118:120–128

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Mukherjee S, Al-Munqedhi B, Kumar R, Kalaji HM (2022) Salicylic acid and silicon impart resilience to lanthanum toxicity in Brassica juncea L. seedlings. Plant Growth Regul 20:1–4

    Google Scholar 

  • Singh S, Kumar V, Parihar P, Dhanjal DS, Singh R, Ramamurthy PC, Prasad R, Singh J (2021) Differential regulation of drought stress by biological membrane transporters and channels. Plant Cell Rep 40(8):1565–1583

    Article  CAS  PubMed  Google Scholar 

  • Singhal RK, Jatav HS, Aftab T, Pandey S, Mishra UN, Chauhan J, Chand S, Saha D, Dadarwal BK, Chandra K, Khan MA (2021) Roles of nitric oxide in conferring multiple abiotic stress tolerance in plants and crosstalk with other plant growth regulators. J Plant Growth Regul 40(6):2303–2328

    Article  CAS  Google Scholar 

  • Soleymanzadeh R, Iranbakhsh A, Habibi G, Ardebili ZO (2020) Selenium nanoparticle protected strawberry against salt stress through modifications in salicylic acid, ion homeostasis, antioxidant machinery, and photosynthesis performance. Acta Biol Cracov Ser Bot 1(62)

  • Somalraju A, Mccallum JL, Main D, Peters RD, Fofana B (2021) Foliar selenium application reduces late blight severity and incidence in potato and acts as a pathogen growth inhibitor and elicitor of induced plant defence. Can J Plant Pathol 2:1–7

    Google Scholar 

  • Song A, Li P, Fan F, Li Z, Liang Y (2014) The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS ONE 9(11):e113782

    Article  PubMed  PubMed Central  Google Scholar 

  • Subramanyam K, Du Laing G, Van Damme EJ (2019) Sodium selenate treatment using a combination of seed priming and foliar spray alleviates salinity stress in rice. Front Plant Sci 10:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun C, Liang X, Gong X, Chen H, Liu X, Zhang S, Li F, Zhao J, Yi J (2022) Comparative transcriptomics provide new insights into the mechanisms by which foliar silicon alleviates the effects of cadmium exposure in rice. J Environ Sci 115:294–307

    Article  CAS  Google Scholar 

  • Taha RS, Seleiman MF, Shami A, Alhammad BA, Mahdi AH (2021) Integrated application of selenium and silicon enhances growth and anatomical structure, antioxidant defense system and yield of wheat grown in salt-stressed soil. Plants 10(6):1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamaoki M, Maruyama-Nakashita A (2017) Molecular mechanisms of selenium responses and resistance in plants. In Selenium in plants, Springer, Cham, pp. 35–51

  • Tang H, Liu Y, Gong X, Zeng G, Zheng B, Wang D, Sun Z, Zhou L, Zeng X (2015) Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress. Environ Sci Pollut Res 22(13):9999–10008

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK, Rai AK (2015) Silicon-mediated alleviation of Cr (VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser induced breakdown spectroscopy and anatomical changes. Ecotoxicol Environ Saf 113:133–144

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Vishwakarma K, Singh VP, Prakash V, Sharma S, Muneer S, Nikolic M, Deshmukh R, Vaculík M, Corpas FJ (2020) Silicon crosstalk with reactive oxygen species, phytohormones and other signaling molecules. J Hazard Mater 408:124820

    Article  PubMed  Google Scholar 

  • Vaculík M, Lukačová Z, Bokor B, Martinka M, Tripathi DK, Lux A (2020) Alleviation mechanisms of metal (loid) stress in plants by silicon: a review. J Exp Bot 71(21):6744–6757

    Article  PubMed  Google Scholar 

  • Van Bockhaven J, Steppe K, Bauweraerts I, Kikuchi S, Asano T, Höfte M, De Vleesschauwer D (2015) Primary metabolism plays a central role in moulding silicon-inducible brown spot resistance in rice. Mol Plant Pathol 16(8):811–824

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Hoewyk D, Takahashi H, Inoue E, Hess A, Tamaoki M, Pilon-Smits EA (2008) Transcriptome analyses give insights into selenium‐stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132(2):236–253

    PubMed  Google Scholar 

  • Vivancos J, Labbé C, Menzies JG, Bélanger RR (2014) Silicon-mediated resistance of A rabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. Mol Plant Pathol 16:572–582

  • Wang HS, Yu C, Fan PP, Bao BF, Li T, Zhu ZJ (2015) Identification of two cucumber putative silicon transporter genes in Cucumis sativus J Plant Growth Regul 34(2):332–338

    Article  Google Scholar 

  • Wang J, Cappa JJ, Harris JP, Edger PP, Zhou W, Pires JC, Adair M, Unruh SA, Simmons MP, Schiavon M, Pilon-Smits EA (2018) Transcriptome‐wide comparison of selenium hyperaccumulator and non-accumulator Stanleya species provides new insight into key processes mediating the hyperaccumulation syndrome. Plant Biotechnol J 16(9):1582–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo S (2017) Role of silicon on plant–pathogen interactions. Front Plant Sci 8:701

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P, Menzies NW, Lombi E, McKenna BA, James S, Tang C, Kopittke PM (2015) Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice. J Exp Bot 66(15):4795–4806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XS, Han JG (2007) Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci Plant Nutr 53(3):278–285

    Article  CAS  Google Scholar 

  • Wrzaczek M, Brosché M, Kangasjärvi J (2013) ROS signaling loops—production, perception, regulation. Curr Opin Plant Biol 16(5):575–582

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Mock HP, Giehl RF, Pitann B, Mühling KH (2019) Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants. J Hazard Mater 364:581–590

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Liu S, Zhao J, Wang F, Du Y, Zou S, Li H, Wen D, Huang Y (2017) Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environ Exp Bot 133:1–1

    Article  Google Scholar 

  • Wu Z, Xu S, Shi H, Zhao P, Liu X, Li F, Deng T, Du R, Wang X, Wang F (2018) Comparison of foliar silicon and selenium on cadmium absorption, compartmentation, translocation and the antioxidant system in Chinese flowering cabbage. Ecotoxicol Environ Saf 166:157–164

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Su L, He Z, Zhang J, Tang Y (2021) Selenium inhibits cadmium absorption and improves yield and quality of cherry tomato (Lycopersicon esculentum) under cadmium stress. J Soil Sci Plant Nutr 21(2):1125–1133

    Article  CAS  Google Scholar 

  • Xu L, Islam F, Ali B, Pei Z, Li J, Ghani MA, Zhou W (2017) Silicon and water-deficit stress differentially modulate physiology and ultrastructure in wheat (Triticum aestivum L.). 3 Biotech 7:1-3

  • Xu S, Zhao N, Qin D, Liu S, Jiang S, Xu L, Sun Z, Yan D, Hu A (2021) The synergistic effects of silicon and selenium on enhancing salt tolerance of maize plants. Environ Exp Bot 187:104482

    Article  CAS  Google Scholar 

  • Yadav V, Wang Z, Wei C, Amo A, Ahmed B, Yang X, Zhang X (2020) Phenylpropanoid pathway engineering: An emerging approach towards plant defense. Pathogens 9(4):312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan GC, Nikolic M, Ye MJ, Xiao ZX, Liang YC (2018) Silicon acquisition and accumulation in plant and its significance for agriculture. J Integr Agric 17(10):2138–2150

    Article  CAS  Google Scholar 

  • Yang Y, Guo Y (2018) Unravelling salt stress signaling in plants. J Integr Plant Biol 60(9):796–804

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Jia J, Lian Z, Hu Y, Guo J, Huo H, Zhu Y, Gong H (2019) Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage. Ecotoxicol Environ Saf 169:8–17

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wang S, Tanaka K, Fujihara S, Itai A, Den X, Zhang S (2016) Silicon‐mediated changes in polyamines participate in silicon‐induced salt tolerance in Sorghum bicolor L. Plant Cell Environ 39(2):245–58

    Article  CAS  PubMed  Google Scholar 

  • Zafar S, Perveen S, Khan MK, Shaheen MR, Hussain R, Sarwar N, Rashid S, Nafees M, Farid G, Alamri S, Shah AA, Javed T, Irfan M, Siddiqui MH (2022) Effect of zinc nanoparticles seed priming and foliar application on the growth and physio-biochemical indices of spinach (Spinacia oleracea L.) under salt stress. PLoS ONE 17(2):e0263194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahedi SM, Moharrami F, Sarikhani S, Padervand M (2020) Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Sci Rep 10(1):1–8

    Article  Google Scholar 

  • Zhang C, Xu B, Zhao CR, Sun J, Lai Q, Yu C (2019) Comparative de novo transcriptomics and untargeted metabolomic analyses elucidate complicated mechanisms regulating celery (Apium graveolens L.) responses to selenium stimuli. PLoS ONE 14(12):e0226752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhang W, Lang D, Cui J, Li Y (2018) Silicon improves salt tolerance of Glycyrrhiza uralensis Fisch. by ameliorating osmotic and oxidative stresses and improving phytohormonal balance. Environ Sci Pollut Res 25(26):25916–25932

    Article  CAS  Google Scholar 

  • Zhang Y, Kaiser E, Li T, Marcelis LF (2022) NaCl affects photosynthetic and stomatal dynamics by osmotic effects, and reduces photosynthetic capacity by ionic effects in tomato (Solanum lycopersicum). J Experimental Bot erac078. https://doi.org/10.1093/jxb/erac078

  • Zhou Y, Tang Q, Wu M, Mou D, Liu H, Wang S, Zhang C, Ding L, Luo J (2018) Comparative transcriptomics provides novel insights into the mechanisms of selenium tolerance in the hyperaccumulator plant Cardamine hupingshanensis. Scientific Reports 8:1-7

  • Zhou J, Gao M, Cui H, Li D, Xia R, Wang T, Zhou J (2021a) Influence of silicon and selenium and contribution of the node to cadmium allocation and toxicity in rice. ACS Agric Sci Technol 1(5):550–557

    Article  CAS  Google Scholar 

  • Zhou J, Zhang C, Du B, Cui H, Fan X, Zhou D, Zhou J (2021b) Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: Comparison of soft vs. durum wheat varieties. J Hazard Mater 402:123546

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Guo J, Feng R, Jia J, Han W, Gong H (2016) The regulatory role of silicon on carbohydrate metabolism in Cucumis sativus L. under salt stress. Plant Soil 406(1):231–249

    Article  CAS  Google Scholar 

  • Zhu Y, Yin J, Liang Y, Liu J, Jia J, Huo H, Wu Z, Yang R, Gong H (2019) Transcriptomic dynamics provide an insight into the mechanism for silicon-mediated alleviation of salt stress in cucumber plants. Ecotoxicol Environ Saf 174:245–254

    Article  CAS  PubMed  Google Scholar 

  • Zsiros O, Nagy V, Párducz Á, Nagy G, Ünnep R, El-Ramady H, Prokisch J, Lisztes-Szabó Z, Fári M, Csajbók J, Tóth SZ (2019) Effects of selenate and red Se-nanoparticles on the photosynthetic apparatus of Nicotiana tabacum. Photosynth Res 139(1):449–460

Download references

Author information

Authors and Affiliations

Authors

Contributions

PK and MI - conceived the idea; BK, PK, and MI designed the article; BK, NSG, NT, and PK – mined the literature and wrote the draft manuscript; PK, MI & RS - reviewed and edited the manuscript; All the authors have read and approved the manuscript.

Corresponding authors

Correspondence to Pankaj Kumar or Mohammad Irfan.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Christopher Guppy.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, B., Kumar, P., Gill, N.S. et al. Molecular mechanisms underpinning the silicon-selenium (Si-Se) interactome and cross-talk in stress-induced plant responses. Plant Soil 486, 45–68 (2023). https://doi.org/10.1007/s11104-022-05482-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05482-6

Keywords

Navigation