Skip to main content
Log in

Extraction of Cu(II), Ni(II), and Al(III) with the Deep Eutectic Solvent D2EHPA/Menthol

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A new hydrophobic deep eutectic solvent (HDES) based on di(2-ethylhexyl)phosphoric acid and menthol has been proposed for the extraction of Al(III), Ni(II), and Cu(II) ions from aqueous solutions. The physicochemical properties of the synthesized deep eutectic solvent are determined as a function of temperature. The kinetics of the extraction of metal ions from hydrochloric acid solutions in an extraction system with an HDES has been studied. A comprehensive study of the extraction of metal ions with the proposed deep eutectic solvent was carried out under various conditions: the effect on the extraction of metal ions of the pH values of the aqueous phase, the ratio of the donor and acceptor of the hydrogen bond of the deep eutectic solvent, the volume ratio of the phases, and the concentration of chloride ions were described. It is shown that the proposed HDES can potentially be used to extract studied metal ions from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., et al., Recycling lithium-ion batteries from electric vehicles, Nature, 2019, vol. 575, pp. 75–86. https://doi.org/10.1038/s41586-019-1682-5

    Article  CAS  PubMed  Google Scholar 

  2. Virolainen, S., Wesselborg, T., Kaukinen, A., and Sainio, T., Removal of iron, aluminium, manganese and copper from leach solutions of lithium-ion battery waste using ion exchange, Hydrometallurgy, 2021, vol. 202, Article 105602. https://doi.org/10.1016/j.hydromet.2021.105602

    Article  CAS  Google Scholar 

  3. Kaiser, D., Pavón, S., and Bertau, M., Recovery of Al, Co, Cu, Fe, Mn, and Ni from spent LIBs after Li selective separation by the COOL-Process, Part 1: Leaching of solid residue from COOL-Process, Chem. Ing. Tech., 2021, vol. 93, pp. 1833–1839. https://doi.org/10.1002/cite.202100098

    Article  CAS  Google Scholar 

  4. Belova, V.V., Voshkin, A.A., Kholkin, A.I., and Payrtman, A.K., Solvent extraction of some lanthanides from chloride and nitrate solutions by binary extractants, Hydrometallurgy, 2009, vol. 97, pp. 198–203. https://doi.org/10.1016/j.hydromet.2009.03.004

    Article  CAS  Google Scholar 

  5. Belova, V.V., Voshkin, A.A., Egorova, N.S., and Kholkin, A.I., Solvent extraction of rare earth metals from nitrate solutions with di(2,4,4-trimethylpentyl)phosphinate of methyltrioctylammonium, J. Mol. Liq., 2012, vol. 172, pp. 144–146. https://doi.org/10.1016/j.molliq.2012.04.012

    Article  CAS  Google Scholar 

  6. Lei, S., Sun, W., and Yang, Y., Solvent extraction for recycling of spent lithium-ion batteries, J. Hazard. Mater., 2021, Article 127654. https://doi.org/10.1016/j.jhazmat.2021.127654

  7. Zakhodyaeva, Y.A., Zinov’eva, I.V., and Voshkin, A.A., Extraction of iron(III) chloride complexes using the polypropylene glycol 425–NaCl–H2O System, Theor. Found. Chem. Eng., 2019, vol. 53, pp. 735–740. https://doi.org/10.1134/S0040579519050373

    Article  CAS  Google Scholar 

  8. Zakhodyaeva, Y.A., Izyumova, K.V., Solov’eva, M.S., and Voshkin, A.A., Extraction separation of the components of leach liquors of batteries, Theor. Found. Chem. Eng., 2017, vol. 51, pp. 883–887. https://doi.org/10.1134/S0040579517050244

    Article  CAS  Google Scholar 

  9. Zakhodyaeva, Y.A., Zinov’eva, I.V., Tokar, E.S., and Voshkin, A.A., Complex extraction of metals in an aqueous two-phase system based on poly(ethylene oxide) 1500 and sodium nitrate, Molecules, 2019, vol. 24, Article 4078. https://doi.org/10.3390/molecules24224078

    Article  CAS  PubMed Central  Google Scholar 

  10. Karmakar, R., and Sen, K., Aqueous biphasic extraction of metal ions: An alternative technology for metal regeneration, J. Mol. Liq., 2019, vol. 273, pp. 231–247. https://doi.org/10.1016/j.molliq.2018.10.036

    Article  CAS  Google Scholar 

  11. Shyam Sunder, G.S., Adhikari, S., Rohanifar, A., Poudel, A., and Kirchhoff, J.R., Evolution of environmentally friendly strategies for metal extraction, Separations, 2020, vol. 7, p. 4. https://doi.org/10.3390/separations7010004

    Article  CAS  Google Scholar 

  12. Cao, J., and Su, E., Hydrophobic deep eutectic solvents: The new generation of green solvents for diversified and colorful applications in green chemistry, J. Cleaner Prod., 2021, vol. 314, Article 127965. https://doi.org/10.1016/j.jclepro.2021.127965

    Article  CAS  Google Scholar 

  13. Tran, M.K., Rodrigues, M.-T.F., Kato, K., Babu, G., and Ajayan, P.M., Deep eutectic solvents for cathode recycling of Li-ion batteries, Nat. Energy, 2019, vol. 4, pp. 339–345. https://doi.org/10.1038/s41560-019-0368-4

    Article  CAS  Google Scholar 

  14. Roldán-Ruiz, M.J., Ferrer, M.L., Gutiérrez, M.C., and del Monte, F., Highly efficient p-toluenesulfonic acid-based deep-eutectic solvents for cathode recycling of Li-ion batteries, ACS Sustainable Chem. Eng., 2020, vol. 8, pp. 5437–5445. https://doi.org/10.1021/acssuschemeng.0c00892

    Article  CAS  Google Scholar 

  15. Peeters, N., Binnemans, K., and Riaño, S., Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents, Green Chem., 2020, vol. 22, pp. 4210–4221. https://doi.org/10.1039/D0GC00940G

    Article  CAS  Google Scholar 

  16. Rodriguez Rodriguez, N., Machiels, L., Onghena, B., Spooren, J., and Binnemans, K., Selective recovery of zinc from goethite residue in the zinc industry using deep-eutectic solvents, RSC Adv., 2020, vol. 10, pp. 7328– 7335. https://doi.org/10.1039/D0RA00277A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, C., Yan, Q., Zhang, X., Lei, L., and Xiao, C., Efficient recovery of end-of-life NdFeB permanent magnets by selective leaching with deep eutectic solvents, Environ. Sci. Technol., 2020, vol. 54, pp. 10370–10379. https://doi.org/10.1021/acs.est.0c03278

    Article  CAS  PubMed  Google Scholar 

  18. Riaño, S., Petranikova, M., Onghena, B., Hoogerstraete, T.V., Banerjee, D., Foreman, M.R.StJ., Ekberg, C., and Binnemans, K., Separation of rare earths and other valuable metals from deep-eutectic solvents: A new alternative for the recycling of used NdFeB magnets, RSC Adv., 2017, vol. 7, pp. 32100– 32113. https://doi.org/10.1039/C7RA06540J

    Article  Google Scholar 

  19. Singh, M.B., Kumar, V.S., Chaudhary, M., and Singh, P., A mini review on synthesis, properties and applications of deep eutectic solvents, J. Indian Chem. Soc., 2021, vol. 98, Article 100210. https://doi.org/10.1016/j.jics.2021.100210

    Article  CAS  Google Scholar 

  20. Damilano, G., Laitinen, A., Willberg-Keyriläinen, P., Lavonen, T., Häkkinen, R., Dehaen, W., Binnemans, K., and Kuutti, L., Effects of thiol substitution in deep-eutectic solvents (DESs) as solvents for metal oxides, RSC Adv., 2020, vol. 10, pp. 23484–23490. https://doi.org/10.1039/D0RA03696J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., and Rasheed, R.K., Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids, J. Am. Chem. Soc., 2004, vol. 126, pp. 9142–9147. https://doi.org/10.1021/ja048266j

    Article  CAS  PubMed  Google Scholar 

  22. Zinov’eva, I.V., Fedorov, A.Y., Milevskii, N.A., Zakhodyaeva, Y.A., and Voshkin, A.A., Dissolution of metal oxides in a choline chloride–sulphosalicylic acid deep eutectic solvent, Theor. Found. Chem. Eng., 2021, vol. 55, pp. 663–670. https://doi.org/10.1134/S0040579521040370

    Article  Google Scholar 

  23. Richter, J., and Ruck, M., Synthesis and dissolution of metal oxides in ionic liquids and deep eutectic solvents, Molecules, 2019, vol. 25, p. 78. https://doi.org/10.3390/molecules25010078

    Article  CAS  PubMed Central  Google Scholar 

  24. Zinov’eva, I.V., Fedorov, A.Y., Milevskii, N.A., Zakhodyaeva, Y.A., and Voshkin, A.A., A deep eutectic solvent based on choline chloride and sulfosalicylic acid: Properties and applications, Theor. Found. Chem. Eng., 2021, vol. 55, pp. 371–379. https://doi.org/10.1134/S0040579521030246

    Article  Google Scholar 

  25. Florindo, C., Romero, L., Rintoul, I., Branco, L.C., and Marrucho, I.M., From phase change materials to green solvents: Hydrophobic low viscous fatty acid-based deep eutectic solvents, ACS Sustainable Chem. Eng., 2018, vol. 6, pp. 3888–3895. https://doi.org/10.1021/acssuschemeng.7b04235

    Article  CAS  Google Scholar 

  26. Zainal-Abidin, M.H., Hayyan, M., and Wong, W.F., Hydrophobic deep eutectic solvents: Current progress and future directions, J. Ind. Eng. Chem., 2021, vol. 97, pp. 142–162. https://doi.org/10.1016/j.jiec.2021.03.011

    Article  CAS  Google Scholar 

  27. Tereshatov, E.E., Boltoeva, M.Yu., and Folden, C.M., First evidence of metal transfer into hydrophobic deep eutectic and low-transition-temperature mixtures: Indium extraction from hydrochloric and oxalic acids, Green Chem., 2016, vol. 18, pp. 4616–4622. https://doi.org/10.1039/C5GC03080C

    Article  CAS  Google Scholar 

  28. Liu, R., Geng, Y., Tian, Z., Wang, N., Wang, M., Zhang, G., and Yang, Y., Extraction of platinum(IV) by hydrophobic deep eutectic solvents based on trioctylphosphine oxide, Hydrometallurgy, 2021, vol. 199, Article 105521. https://doi.org/10.1016/j.hydromet.2020.105521

    Article  CAS  Google Scholar 

  29. Tang, N., Liu, L., Yin, C., Zhu, G., Huang, Q., Dong, J., Yang, X., and Wang, S., Environmentally benign hydrophobic deep eutectic solvents for palladium(II) extraction from hydrochloric acid solution, J. Taiwan Inst. Chem. Eng., 2021, vol. 121, pp. 92–100. https://doi.org/10.1016/j.jtice.2021.04.010

    Article  CAS  Google Scholar 

  30. Zakusilova, V., Zante, G., Tereshatov, E.E., Folden, C.M., and Boltoeva, M., Extraction and separation of iridium(IV) and rhodium(III) from hydrochloric acid media by a quaternary ammonium-based hydrophobic eutectic solvent, Sep. Purif. Technol., 2021, vol. 278, Article 118814. https://doi.org/10.1016/j.seppur.2021.118814

    Article  CAS  Google Scholar 

  31. Geng, Y., Xiang, Z., Lv, C., Wang, N., Wang, Y., and Yang, Y., Recovery of gold from hydrochloric medium by deep eutectic solvents based on quaternary ammonium salts, Hydrometallurgy, 2019, vol. 188, pp. 264–271. https://doi.org/10.1016/j.hydromet.2019.06.013

    Article  CAS  Google Scholar 

  32. Schaeffer, N., Martins, M.A.R., Neves, C.M.S.S., Pinho, S.P., and Coutinho, J.A.P., Sustainable hydrophobic terpene-based eutectic solvents for the extraction and separation of metals, Chem. Commun., 2018, vol. 54, pp. 8104–8107. https://doi.org/10.1039/C8CC04152K

    Article  CAS  Google Scholar 

  33. Or, T., Gourley, S.W.D., Kaliyappan, K., Yu, A., and Chen, Z., Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook, Carbon Energy, 2020, vol. 2, pp. 6–43. https://doi.org/10.1002/cey2.29

    Article  CAS  Google Scholar 

  34. Omar, K.A. and Sadeghi, R., Novel benzilic acid-based deep-eutectic-solvents: Preparation and physicochemical properties determination. Fluid Phase Equilib., 2020, vol. 522, Article 112752. https://doi.org/10.1016/j.fluid.2020.112752

    Article  CAS  Google Scholar 

  35. Jafari, H., Abdollahi, H., Gharabaghi, M., and Balesini, A.A., Solvent extraction of zinc from synthetic Zn–Cd–Mn chloride solution using D2EHPA: Optimization and thermodynamic studies, Sep. Purif. Technol., 2018, vol. 197, pp. 210–219. https://doi.org/10.1016/j.seppur.2018.01.020

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Zakhodyaeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinov’eva, I.V., Kozhevnikova, A.V., Milevskii, N.A. et al. Extraction of Cu(II), Ni(II), and Al(III) with the Deep Eutectic Solvent D2EHPA/Menthol. Theor Found Chem Eng 56, 221–229 (2022). https://doi.org/10.1134/S0040579522020178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522020178

Keywords:

Navigation