Skip to main content
Log in

Effect of Macro- and Micromixing on Processes Involved in Solution Synthesis of Oxide Particles in Mocroreactors with Intensively Swirling Flows

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A comparative study of macro- and micromixing in a 1-L laboratory beaker, a 0.5-L flask, and a microreactor with intensively swirled flows (two-stage jet vortex microreactor (TSJVMR)) is presented. Stirring in the beaker and flask is accomplished with a magnetic stirrer. Mixing is studied with two methods: a 4 M NaOH solution is added to a 0.05 M HCl solution in macromixing studies and the iodide–iodate method is used in micromixing studies. Flows are photographed to establish the mixing behavior in all of the cases and to calculate the mixing zone in the TSJVMR. The results of our studies show that when even macromixing is unsatisfactory with the use of a magnetic stirrer, and the quality of micromixing (as indicated by the segregation index) in the 0.5-L flask equipped with a magnetic follower is 250 times lower than that in the TSJVMR. The results of this study have a significant impact on our understanding of the effects that micromixing conditions have on the solution synthesis of nanoscale particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Teychené, S., Rodríguez-Ruiz, I., and Ramamoorthy, R.K., Reactive crystallization: From mixing to control of kinetics by additives, Curr. Opin. Colloid Interface Sci., 2020, vol. 46, pp. 1–19. https://doi.org/10.1016/j.cocis.2020.01.003

    Article  CAS  Google Scholar 

  2. Nightingale, A.M. and DeMello, J.C., Segmented flow reactors for nanocrystal synthesis, Adv. Mater., 2013, vol. 25, pp. 1813–1821. https://doi.org/10.1002/adma.201203252

    Article  CAS  PubMed  Google Scholar 

  3. Patil, S., Kate, P.R., Deshpande, J.B., and Kulkarni, A.A., Quantitative understanding of nucleation and growth kinetics of silver nanowires, Chem. Eng. J., 2021, vol. 414, Article 128711. https://doi.org/10.1016/j.cej.2021.128711

    Article  CAS  Google Scholar 

  4. Kudryashova, Yu.S., Zdravkov A.V., and Abiev R.Sh., Synthesis of yttrium–aluminum garnet using a microreactor with impinging jets, Glass Phys. Chem., 2021, vol. 47, no. 3, pp. 260–264. https://doi.org/10.1134/S108765962103007X

    Article  CAS  Google Scholar 

  5. Abiev, R.Sh., Zdravkov, A.V., Kudryashova, Yu.S., et al., Synthesis of calcium fluoride nanoparticles in a microreactor with intensely swirling flows, Russ. J. Inorg. Chem., 2021, vol. 66, no. 7, p. 1047. https://doi.org/10.1134/S0036023621070020

    Article  CAS  Google Scholar 

  6. Sidorov, V.I. and Malyavskii, N.I., Stroit. Mater., Oborud., Tekhnol. XXI Veka, 2012, No. 1, p. 42.

  7. Chemical Methods for Producing Ceramic and Polymer Nanomaterials from the Liquid Phase: A Study Guide, Luchinin, V.V. and Shilova, O.A., Eds., St. Petersburg: SPbGETU “LETI,” 2013.

  8. Proskurina, O.V., Abiev, R.S., Danilovich, D.P., Panchuk, V.V., Semenov, V.G., Nevedomsky, V.N., and Gusarov. V.V., Formation of nanocrystalline BiFeO3 during heat treatment of hydroxides co-precipitated in an impinging-jets microreactor, Chem. Eng. Proc.: Proc. Intens., 2019, vol. 143, Article 107598. https://doi.org/10.1016/j.cep.2019.107598

    Article  CAS  Google Scholar 

  9. Tacsi, K., Joo, A., Pusztai, E., Domokos, A., Nagy, Z.K., Marosi, G., and Pataki, H., Development of a triple impinging jet mixer for continuous antisolvent crystallization of acetylsalicylic acid reaction mixture, Chem. Eng. Proc.: Proc. Intens., 2021, vol. 165, Article 108446. https://doi.org/10.1016/j.cep.2021.108446

    Article  CAS  Google Scholar 

  10. Johnson, B.K. and Prud’homme, R.K., Chemical processing and micromixing in confined impinging jets, AIChE J., 2003, vol. 49, pp. 2264–2282.

    Article  CAS  Google Scholar 

  11. Ravi Kumar, D.V., Prasad, B.L.V., and Kulkarni, A.A., Impinging jet micromixer for flow synthesis of nanocrystalline MgO: Role of mixing/impingement zone, Ind. Eng. Chem. Res., 2013, vol. 52, pp. 17376–17382. https://doi.org/10.1021/ie402012x

    Article  CAS  Google Scholar 

  12. Marchisio, D.L., Rivautella, L., and Barresi, A.A., Design and scale-up of chemical reactors for nanoparticle precipitation, AIChE J., 2006, vol. 52, p. 1877–1887.

    Article  CAS  Google Scholar 

  13. Nightingale, A.M., PhD Thesis, Imperial College London, Department of Chemistry, 2010.

  14. Zhao, C.-X., He, L., Qiao, S.Z., and Middelberg, A.P.J., Nanoparticle synthesis in microreactors, Chem. Eng. Sci., 2011, vol. 66, p. 1463–1479. https://doi.org/10.1016/j.ces.2010.08.039

    Article  CAS  Google Scholar 

  15. Bałdyga, J. and Bourne, J.R., Simplification of micromixing calculations. I. Derivation and application of new model, Chem. Eng. J., 1989, vol. 42, p. 83–92.

    Article  Google Scholar 

  16. Morozov, M.I., Mezentseva, L.P., and Gusarov, V.V., Mechanism of formation of Bi4Ti3O12, Russ. J. Gen. Chem., 2002, vol. 72, no. 7, pp. 1038–1040.

    Article  CAS  Google Scholar 

  17. Morozov, M.I., Lomanova, N.A., and Gusarov, V.V., Specific features of BiFeO3 formation in a mixture of bismuth(III) and iron(III) oxides, Russ. J. Gen. Chem., 2003, vol. 73, no. 11, pp. 1676–1680. https://doi.org/10.1023/B:RUGC.0000018640.30953.70

    Article  CAS  Google Scholar 

  18. Artamonova, O.V., Al’myasheva, O.V., Mittova, I.Ya., et al., Hydrothermal synthesis of zirconia-based nanocrystals in the ZrO2–In2O3 system, Russ. J. Inorg. Chem., 2004, vol. 49, no. 11, p. 1657–1660.

    Google Scholar 

  19. Krzhizhanovskaya, M., Filatov, S., Gusarov, V.V., et al., Aurivillius phases in the Bi4Ti3O12/BiFeO3 system: Thermal behaviour and crystal structure, Z. Anorg. Allg. Chem., 2005, vol. 631, no. 9, pp. 1603–1608.

    Article  CAS  Google Scholar 

  20. Tugova, E.A., Popova, V.F., Zvereva, I.A., et al., Mechanism and kinetics of formation of La2SrFe2O7 and Nb2SrFe2O7, Russ. J. Gen. Chem., 2007, vol. 77, no. 6, p. 979–982.

    Article  CAS  Google Scholar 

  21. Almjasheva, O.V. and Gusarov, V.V., Hydrothermal synthesis of nanosized and amorphous alumina in the ZrO2–Al2O3–H2O system, Russ. J. Inorg. Chem., 2007, vol. 52, no. 8, pp. 1194–1200. https://doi.org/10.1134/S0036023607080062

    Article  Google Scholar 

  22. Chivilikhin, S.A., Popov, I.Yu., Svitenkov, A.I., et al., Dokl. Akad. Nauk, 2009, vol. 429, no. 2, p. 185.

    Google Scholar 

  23. Al’myashev, O.V. and Gusarov, V.V., Features of the phase formation in the nanocomposites, Russ. J. Gen. Chem., 2010, vol. 80, no. 3, pp. 385–390. https://doi.org/10.1134/S1070363210030023

    Article  CAS  Google Scholar 

  24. Komlev, A.A., and Gusarov, V.V., Mechanism of the nanocrystals formation of the spinel structure in the MgO–Al2O3–H2O system under the hydrothermal conditions, Russ. J. Gen. Chem., 2011, vol. 81, no. 11, p. 2222. https://doi.org/10.1134/S1070363211110028

    Article  CAS  Google Scholar 

  25. Kirillova, S.A., Al’myashev, V.I., and Gusarov, V.V., Spinodal decomposition in the SiO2–TiO2 system and hierarchically organized nanostructures formation, Nanosyst.: Phys., Chem., Math., 2012, vol. 3, no. 2, p. 100.

    Google Scholar 

  26. Smirnov, A.V., Fedorov, B.A., Tomkovich, M.V., et al., Core-shell nanoparticles forming in the ZrO2–Gd2O3–H2O system under hydrothermal conditions, Dokl. Phys. Chem., 2014, vol. 456, no. 1, pp. 71–73. https://doi.org/10.1134/S0012501614050042

    Article  CAS  Google Scholar 

  27. Popkov, V.I., Almjasheva, O.V., and Gusarov, V.V., The investigation of the structure control possibility of nanocrystalline yttrium orthoferrite in its synthesis from amorphous powders, Russ. J. Appl. Chem., 2014, vol. 87, pp. 1417–1421. https://doi.org/10.1134/S1070427214100048

    Article  CAS  Google Scholar 

  28. Popkov V.I., Almjasheva O.V., Schmidt M.P., et al., Formation mechanism of nanocrystalline yttrium orthoferrite under heat treatment of the coprecipitated hydroxides, Russ. J. Gen. Chem., 2015, vol. 85, pp. 1370–1375. https://doi.org/10.1134/S107036321506002X

    Article  CAS  Google Scholar 

  29. Almjasheva, O.V. and Gusarov, V.V., Prenucleation formations in control over synthesis of CoFe2O4 nanocrystalline powders, Russ. J. Appl. Chem., 2016, vol. 89, no. 6, pp. 851–856. https://doi.org/10.1134/S107042721606001X

    Article  CAS  Google Scholar 

  30. Komlev, A.A., Panchuk, V.V., Semenov V.G., et al., Effect of the sequence of chemical transformations on the spatial segregation of components and formation of periclase–spinel nanopowders in the MgO–Fe2O3–H2O system, Russ. J. Appl. Chem., 2016, vol. 89, no. 12, pp. 1932–1938. https://doi.org/10.1134/S1070427216120028

    Article  CAS  Google Scholar 

  31. Proskurina, O.V., Nogovitsin, I.V., Il’ina, T.S., et al., Formation of BiFeO3 nanoparticles using impinging jets microreactor, Russ. J. Gen. Chem., 2018, vol. 88, no. 10, pp. 2139–2143. https://doi.org/10.1134/S1070363218100183

    Article  CAS  Google Scholar 

  32. Proskurina, O.V., Sokolova, A.N., Sirotkin, A.A., et al., Role of hydroxide precipitation conditions in the formation of nanocrystalline BiFeO3, Russ. J. Inorg. Chem., 2021, vol. 66, no. 2, pp. 163–169. https://doi.org/10.1134/S0036023621020157

    Article  CAS  Google Scholar 

  33. Gyurik, L., Ulbert, Zs., Molnár, B., et al., CFD based nozzle design for a multijet mixer, Chem. Eng. Proc.: Proc. Intens., 2020, vol. 157, Article 108121. https://doi.org/10.1016/j.cep.2020.108121

    Article  CAS  Google Scholar 

  34. Chen, J., Jiang, W., and Liu, Y., Study on energy distribution characteristics of cyclone in Laval nozzle, Chem. Eng. Proc.: Proc. Intens., 2020, vol. 157, Article 108149. https://doi.org/10.1016/j.cep.2020.108149

    Article  CAS  Google Scholar 

  35. Guichardon, P. and Falk, L., Characterisation of micromixing efficiency by the iodide–iodate reaction system. Part I: Experimental procedure, Chem. Eng. Sci., 2000, vol. 55, pp. 4233–4243. https://doi.org/10.1016/S0009-2509(00)00068-3

    Article  CAS  Google Scholar 

  36. Falk L. and Commenge, J.-M., Performance comparison of micromixers, Chem. Eng. Sci., 2010, vol. 65, pp. 405–411. https://doi.org/10.1016/j.ces.2009.05.045

    Article  CAS  Google Scholar 

  37. Abiev, R.Sh. and Sirotkin A.A., Influence of hydrodynamic conditions on micromixing in microreactors with free impinging jets, Fluids, 2020, vol. 5, p. 179. https://doi.org/10.3390/fluids5040179

    Article  CAS  Google Scholar 

  38. Schaer, E., Guichardon, P., Falk, L., and Plasari, E., Determination of local energy dissipation rates in impinging jets by a chemical reaction method, Chem. Eng. J., 1999, vol. 72, pp. 125–138.

    Article  CAS  Google Scholar 

  39. Baldyga, J. and Bourne, J. R., Chem. Eng. J., 1990, vol. 45, pp. 25–31.

    Article  CAS  Google Scholar 

  40. Ditl, P., Šulc, R., Pešava, V., Jašíkova, D., Kotek, M., Kopecký, V., and Kysela, B., Local turbulent energy dissipation rate in an agitated vessel: Experimental and turbulence scaling, Theor. Found. Chem. Eng., 2018, vol. 52, p. 122–134.

    Article  CAS  Google Scholar 

  41. Alopaeus, V., Koskinen, J., and Keskinen, K.I., Simulation of the population balances for liquid–liquid systems in a nonideal stirred tank. Part 1: Description and qualitative validation of the model, Chem. Eng. Sci., 1999, vol. 54, p. 5887–5899.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to D.A. Potekhin for assistance with the photography in the studies of macromixing in a laboratory beaker.

Funding

The work was supported by the Russian Science Foundation (project no. 20-63-47016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sh. Abiev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abiev, R.S., Makusheva, I.V. Effect of Macro- and Micromixing on Processes Involved in Solution Synthesis of Oxide Particles in Mocroreactors with Intensively Swirling Flows. Theor Found Chem Eng 56, 141–151 (2022). https://doi.org/10.1134/S0040579522020014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522020014

Keywords:

Navigation