Skip to main content

Advertisement

Log in

Effect of Surface Concentration of Nickel on the Activity and Selectivity of Ni/ZnO-Al2O3 Sorbents in Reactive–Adsorption Desulfurization of Olefin-Containing Feedstock

  • KINETICS AND CATALYSIS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

The advantages of the reactive adsorption process for ultra-deep desulfurization of gasoline from catalytic cracking and other hydrocarbon fractions are demonstrated. In order to investigate the effect of the surface concentration of nickel on the activity and selectivity of the reactive adsorption process a series of Ni/ZnO-Al2O3 adsorption-catalytic systems with various nickel contents were synthesized. It was established that at the chemisorption stage at 400°C, with pressure of 0.5 MPa and feedstock weight hourly space velocity of 5.2 h–1 the conversion of thiophene is increased to 94.8% with increase of the surface concentration of nickel to 8 at/nm2. However, the highest value for the hydrodesulfurization/hydrogenation selectivity factor is obtained for the Ni/ZnO-Al2O3 adsorption-catalytic system with a nickel surface concentration of 6 at/nm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. A. Tanimu, K. Alhooshani, Energy & Fuels, No. 4, 2810-2838 (2019).

  2. C. Song, Catalysis Today, 86, No. 1-4, 211-263 (2003).

    Article  CAS  Google Scholar 

  3. M. N. Hossain, H. C. Park, H. S. Choi, Catalysts, 9, No. 3, 229 (2019).

    Article  Google Scholar 

  4. R. Abro, A. A. Abdeltawab, S. S. Al-Deyab, et al., RSC Advances, 4, No. 67, 35302-35317 (2014).

    Article  CAS  Google Scholar 

  5. B. Saha, S. Vedachalam, A. K. Dalai, Fuel Processing Technology, 214, 106685 (2021).

    Article  CAS  Google Scholar 

  6. G. A. Delzer, G. P. Khare, G. J. Greenwood, AlChE Annual Meeting. Symposium on Gas Purification, Paper № 130f (1993).

  7. G. P. Khare, G. A. Delzer, D. H. Kubicek, et al., Environmental Progress, 14, 146-150 (1995).

    Article  CAS  Google Scholar 

  8. L. Wang, L. Zhao, C. Xu, et al., Applied Surface Science, 399, 440-450 (2017).

    Article  CAS  Google Scholar 

  9. C. Morin, A. Eichler, R. et al. Hirschl, Surface Science, 540, 474-490 (2003).

  10. F. Mittendorfer, J. Hafner, Surface Science, 492, 27-33 (2001).

    Article  CAS  Google Scholar 

  11. D. R. Huntley, D. R. Mullins, M. P. Wingeier, Journal of Physical Chemistry, 100, 19620-19627 (1996).

    Article  CAS  Google Scholar 

  12. I. Bezverkhyy, G. Gadacz, J. -P. Bellat, Materials Chemistry and Physics, 114, 897-901 (2009).

    Article  CAS  Google Scholar 

  13. A. Bazyari, Y. Mortazavi, A. A. Khodadadi, et al., Applied Catalysis B: Environmental, 180, 312-323 (2016).

    Article  CAS  Google Scholar 

  14. K. Tawara, T. Nishimura, H. Iwanami, et al., Ind. Eng. Chem. Res., 40, No. 10, 2367-2370 (2001).

    Article  CAS  Google Scholar 

  15. L. Huang, L. Yan, M. Tang, et al., ACS Omega, 3, 18967-18975 (2018).

    Article  CAS  Google Scholar 

  16. X. Meng, H. Huang, H. Weng, et al., Bull. Korean Chem. Soc., 33, No. 10, 3213-3217 (2012).

    Article  CAS  Google Scholar 

  17. H.-Y. Yin, C.-H. Li, L.-X. Wang, et al., Advanced Materials Research, 79-82, 2219-2222 (2009).

  18. C. Weicheng, Y. Xiaoling, H. Huan, et al., China Petroleum Processing and Petrochemical Technology, 18, No. 4, 11-18 (2016).

    Google Scholar 

  19. Fan J., Wang G., Sun Y. et al. - Ind. Eng. Chem. Res. - 2010. - V. 49. - P. 8450-8460.

  20. I. Bezverkhyy, A. Ryzhikov, G. Gadacz, et al., Catalysis Today, 130, 199-205 (2008).

    Article  CAS  Google Scholar 

  21. A. Ryzhikov, I. Bezverkhyy, J. -P. Bellat, et al., Applied Catalysis B: Environmental, 84, 766-772 (2006).

    Article  Google Scholar 

  22. F. Ju, M. Wang, H. Luan, et al., RSC Advances, 8, 33354-33360 (2018).

    Article  CAS  Google Scholar 

  23. S. Brunet, D. Mey, G. Perot, et al., Applied Catalysis A: General, 278, 143-172 (2005).

    Article  CAS  Google Scholar 

  24. I. V Babich, J. A. Moulijn, et al., Fuel, 82, No. 6, 607-631 (2003).

    Article  CAS  Google Scholar 

  25. C. S. Hsu, P. R. Robinson, Practical Advances in Petroleum Processing, Vol. 1, Springer Science (2006), 894 pp.

  26. G. J. Phillips, Oil and Gas Journal, 99, 74-76 (2002).

    Google Scholar 

  27. C. Tucker, E. Sughrue, J. Vanderlaan, In: AM-03-48, NPRA 2003 Annual Meeting, March 23-25, 2003.

  28. P. Marion, In: 4th International Conference on Petroleum Refining Technology and Economics in Russia, the CIS and Baltics, 2002.

  29. C. Song, X. Ma, International Journal of Green Energy, 1, No. 2, 167-191 (2004).

    Article  CAS  Google Scholar 

  30. X. Geng, G. Zhang, X. Wang, et al., ResearchSquare (2020), pp. 1-17.

  31. J. Zhao, L. Zhang, N. She, et al., Appl. Petrochem Res., 4, 359-365 (2014).

    Article  CAS  Google Scholar 

  32. F. Ju, C. Liu, K. Li, et al., Energy Fuels, 30, No. 8, 6688-6697 (2016).

    Article  Google Scholar 

  33. L. Du, Y. Li, Z. Miao, et al., Transactions of Tianjin University, (2018).

  34. K. Zhang, Y. Liu, S. Tian, et al., Fuel, 104, 201-207 (2013).

    Article  CAS  Google Scholar 

  35. A. Daudin, S. Brunet, G. Perot, et al., Journal of Catalysis, 248, 111-119 (2007).

    Article  CAS  Google Scholar 

  36. G. Wang, Y. Wen, J. Fan, et al., Ind. & Eng. Chem. Res., 50, 12449-12459 (2011).

    Article  CAS  Google Scholar 

  37. M. Li, H. Li, F. Jiang, et al., Catalysis Today, 149, 35-39 (2010).

    Article  CAS  Google Scholar 

Download references

The reported study was funded by Russian Fundamental Research Foundation and INSF, project number 20-58-56019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Botin.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 2, pp. 14–20 March – April, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botin, A.A., Mozhaev, A.V., Boldushevskii, R.E. et al. Effect of Surface Concentration of Nickel on the Activity and Selectivity of Ni/ZnO-Al2O3 Sorbents in Reactive–Adsorption Desulfurization of Olefin-Containing Feedstock. Chem Technol Fuels Oils 58, 275–282 (2022). https://doi.org/10.1007/s10553-022-01379-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-022-01379-3

Keywords

Navigation