Skip to main content
Log in

Synthesis and Investigation of Nickel–Aluminum Oxide Catalysts on a Carbon Support

  • KINETICS AND CATALYSIS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

Samples of catalysts obtained by impregnating activated carbon with the oxides NiO and Al2O3 were investigated. It was shown that increase in the ratio of nickel and aluminum cations in the impregnating solution from 2:1 to 3:1 leads to decrease in the average pore diameter and to increase in the specific surface area of the activated carbon by 1.5 times. Activated carbons impregnated by nickel and aluminum oxides with the metal cation of the impregnating solution in a ratio of 3:1 and calcined in a stream of hydrogen have the largest surface area in pores with diameter of 10-200 nm. Heat treatment of the nickel–aluminum oxide catalysts on a carbon support at 450°С in a stream of hydrogen leads to increase of the pore size and to decrease of the specific surface area. Mechanical activation of the oxide catalysts on the carbon support by ultrasonic treatment increases the outer surface area of the particles by more than twice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. G. P. Kayukova et al., Chemistry and Technology of Fuels and Oils, 51, No. 1, 117-126 (2015).

    Article  CAS  Google Scholar 

  2. A. I. Lakhova et al., Res. J. Appl. Sci., 10, 917-921 (2015).

    CAS  Google Scholar 

  3. L. R. Baibekova et al., International Journal of Applied Chemistry, 11, No. 5, 593-599 (2015).

    Google Scholar 

  4. S. Petrov et al., IOP Conference Series: Earth and Environmental Science, 282, No. 1, P. 012004 (2019).

  5. R. R. Zakieva et al., Chemistry and Technology of Fuels and Oils, 51, No. 5, 480-486 (2015).

    Article  CAS  Google Scholar 

  6. A. G. Safiulina et al., Chemistry and Technology of Fuels and Oils, 53, No. 6, 897-904 (2018).

    Article  CAS  Google Scholar 

  7. S. M. Petrov et al., Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6, No. 6, 1624-1629 (2015).

    CAS  Google Scholar 

  8. L. R. Baibekova et al., International Journal of Applied Chemistry, 11, No. 5, 593-599 (2015).

    Google Scholar 

  9. S. M. Petrov, Chemistry and Technology of Fuels and Oils, 1-6 (2022).

  10. A. Lakhova et al., Petroleum Science and Technology, 37, No. 5, 611-616 (2019).

    Article  CAS  Google Scholar 

  11. N. H. G. Rahmani, T. Dabros, J. H. Masliyah, Journal of Colloid and Interface Science, 285, No. 2, 599-608 (2005).

    Article  CAS  Google Scholar 

  12. J. A. Duran et al., Energy & Fuels, 33, No. 5, 3694-3710 (2018).

    Article  Google Scholar 

  13. M. R. Gray et al., Energy & Fuels, 35, No. 22, 18078-18103 (2021).

    Article  CAS  Google Scholar 

  14. I. S. Kutlubaev et al., Vestnik Bashirskogo Universiteta, 25, No. 2, 257-261 (2020).

    Google Scholar 

  15. G. D. Chukin, O. V. Matsukatov, Neftepererabotka i Neftekhimiya. Nauchno-tekhnicheskie Dostizheniya i Peredovoi Opyt, No. 12, 3-10 (2020).

  16. V. G. Kozin, Modern Technology for Production of Components of Motor Fuels [in Russian] (2009).

  17. I. P. Mukhlenov, Technology of Catalysts [in Russian], Ripol Klassik (1979).

  18. A. Nosova et al., Petroleum Science and Technology, 36, No. 13, 1001-1006 (2018).

    Article  CAS  Google Scholar 

  19. S. M. Petrov et al., Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6, No. 6, 1624-1629 (2015).

    CAS  Google Scholar 

  20. S. M. Petrov et al., Petroleum Chemistry, 56, No. 1, 21-26 (2016).

    Article  CAS  Google Scholar 

  21. A. V. Vakhin et al., Processes, 9, No. 1, 158 (2021).

    Article  CAS  Google Scholar 

  22. I. Zaidullin et al., Chemistry and Technology of Fuels and Oils, 54, No. 5, 550-556 (2018).

    Article  CAS  Google Scholar 

  23. A. I. Lakhova et al., Processes, 9, No. 3, 553 (2021).

    Article  CAS  Google Scholar 

  24. E. G. Moiseeva et al., Chemistry and Technology of Fuels and Oils, 57, No. 5, 746-752 (2021).

    Article  CAS  Google Scholar 

  25. O. A Knyazheva et al., Kataliz v Promyshlennosti, No. 3, 30-37 (2014).

    Google Scholar 

  26. S. Petrov, R. Soldatova, A. Lakhova , IOP Conference Series: Earth and Environmental Science, 282, No. 1, 012015 (2019).

    Article  Google Scholar 

  27. A. N. Voropai et al., Vestnik Kuzbasskogo Gosudarstvennogo Tekhnicheskogo Universiteta, No. 5 (99), 54-57 (2013).

  28. F. Rodriguez-Reiniso, M. Molina Sabio, Carbon, 30, No. 7, 1111-1118 (1992).

    Article  Google Scholar 

  29. RF Pat. No. 2023662.

  30. S. M. Petrov, Processes, 9, No. 2, 256 (2021).

    Article  CAS  Google Scholar 

  31. A. I. Lakhova et al., Chemistry and Technology of Fuels and Oils, 55, No. 2, 119-124 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Moiseeva.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 2, pp. 21–26 March – April, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseeva, E.G., Il’menskii, A.S., Mishagin, K.A. et al. Synthesis and Investigation of Nickel–Aluminum Oxide Catalysts on a Carbon Support. Chem Technol Fuels Oils 58, 283–288 (2022). https://doi.org/10.1007/s10553-022-01380-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-022-01380-w

Keywords

Navigation