Skip to main content
Log in

Hydrocarbon Composition of Maltene Cracking Products of Naphthenic Oil with WC/Ni–Cr Additive

  • RESEARCH
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

Using GC-MS the composition of hydrocarbons in maltenes from heavy naphthenic crude oil (Usinskoye oilfield) after cracking in the presence of WC/Ni–Cr additive and without it has been studied. Cracking of maltenes was carried out at 450°С for 2 hours in isothermal mode. Using WC/Ni–Cr additive during cracking contributes to the deepening of the degradation reactions in hydrocarbons and resins. It is shown that the amount of low molecular weight C11–C19 alkanes and C9–C10 alkylbenzenes increases significantly in cracking products when using WC/Ni–Cr, the content of cyclohexanes and bicyclanes decreases, complete destruction of tri-, tetra- and pentacyclic saturated hydrocarbons occurs compared to cracking without the additive. There are changes in the composition of naphthenic hydrocarbons. Along with degradation reactions, condensation reactions occur, leading to the formation of polycyclic aromatic hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. A. Akhmetov, Deep Processing Technology of Oil and Gas [in Russian], Gilem, Ufa (2002) 672 p.

    Google Scholar 

  2. G. Alonso-Ramirez, F. Sanchez-Minero, Jorge Ramirez, et al., Pet. Sci. Technol., 36, 507–513 (2018).

    Article  CAS  Google Scholar 

  3. Ahmad Masudi and Oki Muraza, Energy Fuels, 32, 2840–2854 (2018).

    Article  CAS  Google Scholar 

  4. Abdullah Al-Marshed, Abarasi Hart, Gary Leeke, et al., Ind. Eng. Chem. Res., 54, 10645–10655 (2015).

    Article  CAS  Google Scholar 

  5. N. N. Sviridenko, E. B. Krivtsov, and A. K. Golovko, Khimiya v Interesakh Ustoychivogo Razvitiya, 26, 427-434 (2018).

    CAS  Google Scholar 

  6. Thomas Kaminski, Shaheen Fatima Anis, Maen M. Husein, et al., Energy Fuels, 32, 2224–2233 (2018).

    Article  CAS  Google Scholar 

  7. Adan Y. Leon, Alexander Guzman, Dionisio Laverde, et al., Energy Fuels, 31, 3868–3877 (2017).

    Article  CAS  Google Scholar 

  8. Robert L. Krumm, Milind Deo, and Mike Petrick, Energy Fuels, 26, 2663–2671 (2012).

    Article  CAS  Google Scholar 

  9. T. Al. Darouich, F. Behar, and C. Largeau, Org. Geochem., 37, 1130–1154 (2006).

    Article  Google Scholar 

  10. E. Alvarez, G. Marroquin, F. Trejo, et al., Fuel, 90, 3602–3607 (2011).

    Article  CAS  Google Scholar 

  11. Hui Tian, Xianming Xiao, Huajun Gan, et al., Geochem. J., 44, 151–158 (2010).

    Article  CAS  Google Scholar 

  12. A. Hauser, F. Alhumaidan, H. Al-Rabiah, et al., Energy Fuels, 28, 4321–4332 (2014).

    Article  CAS  Google Scholar 

  13. P. Holda, L. P. Jose, J. A. Montoya de la Fuente, et al., Energy Fuels, 31, 4843–4850 (2017).

    Article  Google Scholar 

  14. G. S. Pevneva, N. G. Voronetskaya, A. A. Grin’ko, et al., Petrol. Chem., 56, 690–696 (2016).

    Article  CAS  Google Scholar 

  15. D. S. Korneev, V. N. Melenevskii, G. S. Pevneva, et al., Petrol. Chem., 58, 179–185 (2018).

    Article  CAS  Google Scholar 

  16. G. S. Pevneva, N. G. Voronetskaya, D. S. Korneev, et al., Petrol. Chem., 57, 479–486 (2017).

    Article  Google Scholar 

  17. G. S. Pevneva, N. G. Voronetskaya, and N. N. Sviridenko, Petrol. Chem., 60, 373–379 (2020).

    Article  CAS  Google Scholar 

  18. D. E. Dmitriev and A. K. Golovko, Petrol. Chem., 50, 118–125 (2010).

    Article  CAS  Google Scholar 

  19. G. S. Pevneva, N. G. Voronetskaya, N. N. Sviridenko, et al., Petrol. Sci., 17, 499–508 (2020).

    Article  CAS  Google Scholar 

  20. N. N. Sviridenko, E. B. Krivtsov, and A. K. Golovko, Petroleum and Coal, 58, 732–735 (2016).

    CAS  Google Scholar 

  21. H. Pakdel and C. Roy, Energy Fuels, 17, 1145–1152 (2003).

    Article  CAS  Google Scholar 

  22. F. Behar, F. Lorant, H. Budzinski, et al., Energy Fuels, 16, 831–841 (2002).

    Article  CAS  Google Scholar 

  23. C. M. Smith and P. E. Savage, Chem. Eng. Sci., 49, 259–270 (1994).

    Article  CAS  Google Scholar 

  24. V. Burkle-Vitzthum, R. Michels, G. Scacchi, et al., Org. Geochem., 35, 3–31 (2004).

    Article  CAS  Google Scholar 

  25. Lawrence Lai, Soumya Gudiyella, Mengjie Liu, et al., Energy Fuels, 32, 5489–5500 (2018).

    Article  CAS  Google Scholar 

  26. J. P. Leininger, F. Lorant, C. Minot, et al., Energy Fuels, 20, 2518–2530 (2006).

    Article  CAS  Google Scholar 

Download references

The work was carried out within the framework of the state task of the Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences (project V. 46.2.2), funded by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Pevneva.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 1, pp. 34–40 January – February, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pevneva, G.S., Voronetskaya, N.G. & Sviridenko, N.N. Hydrocarbon Composition of Maltene Cracking Products of Naphthenic Oil with WC/Ni–Cr Additive. Chem Technol Fuels Oils 58, 289–296 (2022). https://doi.org/10.1007/s10553-022-01381-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-022-01381-9

Keywords

Navigation