Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spontaneous formation of metastable orientation with well-organized permanent dipole moment in organic glassy films

Abstract

The performance of organic optoelectronic and energy-harvesting devices is largely determined by the molecular orientation and resultant permanent dipole moment, yet this property is difficult to control during film preparation. Here, we demonstrate the active control of dipole direction—that is, vector direction and magnitude—in organic glassy films by physical vapour deposition. An organic glassy film with metastable permanent dipole moment orientation can be obtained by utilizing the small surface free energy of a trifluoromethyl unit and intramolecular permanent dipole moment induced by functional groups. The proposed molecular design rule could pave a way toward the formation of spontaneously polarized organic glassy films, leading to improvement in the performance of organic molecular devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Giant surface potential of vacuum-deposited films.
Fig. 2: Spontaneous orientation of proposed F-based molecules.
Fig. 3: Orientation of polarization in vacuum-deposited films of F-based molecules.
Fig. 4: Device applications of polar films.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Additional information is available from the authors on request. Source data are provided with this paper.

References

  1. Ito, E. et al. Spontaneous buildup of giant surface potential by vacuum deposition of Alq3 and its removal by visible light irradiation. J. Appl. Phys. 92, 7306–7310 (2002).

    Article  CAS  Google Scholar 

  2. Noguchi, Y., Brütting, W. & Ishii, H. Spontaneous orientation polarization in organic light-emitting diodes. Jpn. J. Appl. Phys. 58, SF0801 (2019).

    Article  CAS  Google Scholar 

  3. Jäger, L., Schmidt, T. D. & Brütting, W. Manipulation and control of the interfacial polarization in organic light-emitting diodes by dipolar doping. AIP Adv. 6, 095220 (2016).

    Article  CAS  Google Scholar 

  4. Osada, K. et al. Observation of spontaneous orientation polarization in evaporated films of organic light-emitting diode materials. Org. Electron. 58, 313–317 (2018).

    Article  CAS  Google Scholar 

  5. Noguchi, Y. et al. Charge accumulation at organic semiconductor interfaces due to a permanent dipole moment and its orientational order in bilayer devices. J. Appl. Phys. 111, 114508 (2012).

    Article  CAS  Google Scholar 

  6. Ueda, Y. et al. Role of spontaneous orientational polarization in organic donor–acceptor blends for exciton binding. Adv. Opt. Mater. 8, 2000896 (2020).

    Article  CAS  Google Scholar 

  7. Noguchi, Y. et al. Influence of the direction of spontaneous orientation polarization on the charge injection properties of organic light-emitting diodes. Appl. Phys. Lett. 102, 203306 (2013).

    Article  CAS  Google Scholar 

  8. Morgenstern, T. et al. Correlating optical and electrical dipole moments to pinpoint phosphorescent dye alignment in organic light-emitting diodes. ACS Appl. Mater. Interfaces 10, 31541–31551 (2018).

    Article  CAS  Google Scholar 

  9. Tanaka, Y., Matsuura, N. & Ishii, H. Self-assembled electret for vibration-based power generator. Sci. Rep. 10, 6648 (2020).

    Article  CAS  Google Scholar 

  10. Suzuki, Y. Recent progress in MEMS electret generator for energy harvesting. IEEJ Trans. Electr. Electron. Eng. 6, 101–111 (2011).

    Article  CAS  Google Scholar 

  11. Schmid, M. et al. Optical and electrical measurements reveal the orientation mechanism of homoleptic iridium-carbene complexes. ACS Appl. Mater. Interfaces 12, 51709–51718 (2020).

    Article  CAS  Google Scholar 

  12. Naqvi, B. A. et al. What controls the orientation of TADF emitters? Front. Chem. 8, 750 (2020).

    Article  CAS  Google Scholar 

  13. Isoshima, T. et al. Negative giant surface potential of vacuum-evaporated tris(7-propyl-8-hydroxyquinolinolato) aluminum(III) [Al(7-Prq)3] film. Org. Electron. 14, 1988–1991 (2013).

    Article  CAS  Google Scholar 

  14. Adachi, C., Nagai, K. & Tamoto, N. Search for oxadiazole derivatives in organic electroluminescent diodes. Disp. Imaging 5, 325–341 (1997).

    Google Scholar 

  15. Nishino, T., Meguro, M., Nakamae, K., Matsushita, M. & Ueda, Y. The lowest surface free energy based on -CF3 alignment. Langmuir 15, 4321–4323 (1999).

    Article  CAS  Google Scholar 

  16. Wei, Q., Nishizawa, T., Tajima, K. & Hashimoto, K. Self-organized buffer layers in organic solar cells. Adv. Mater. 20, 2211–2216 (2008).

    Article  CAS  Google Scholar 

  17. Tajima, K. Look beyond the surface: recent progress in applications of surface-segregated monolayers for organic electronics. Polym. J. 51, 1117–1126 (2019).

    Article  CAS  Google Scholar 

  18. Bagchi, K. et al. Origin of anisotropic molecular packing in vapor-deposited Alq3 glasses. J. Phys. Chem. Lett. 10, 164–170 (2019).

    Article  CAS  Google Scholar 

  19. Friederich, P., Rodin, V., Von Wrochem, F. & Wenzel, W. Built-in potentials induced by molecular order in amorphous organic thin films. ACS Appl. Mater. Interfaces 10, 1881–1887 (2018).

    Article  CAS  Google Scholar 

  20. Geng, Y. et al. Donor–σ–acceptor motifs: thermally activated delayed fluorescence emitters with dual upconversion. Angew. Chem. Int. Ed. 129, 16763–16767 (2017).

    Article  Google Scholar 

  21. Dalal, S. S., Walters, D. M., Lyubimov, I., de Pablo, J. J. & Ediger, M. D. Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors. Proc. Natl. Acad. Sci. 112, 4227–4232 (2015).

    Article  CAS  Google Scholar 

  22. Hofmann, A., Schmid, M. & Brütting, W. The many facets of molecular orientation in organic optoelectronics. Adv. Opt. Mater. 9, 2101004 (2021).

    Article  CAS  Google Scholar 

  23. Ediger, M. D., De Pablo, J. & Yu, L. Anisotropic vapor-deposited glasses: hybrid organic solids. Acc. Chem. Res. 52, 407–414 (2019).

    Article  CAS  Google Scholar 

  24. Tanaka, M., Noda, H., Nakanotani, H. & Adachi, C. Molecular orientation of disk-shaped small molecules exhibiting thermally activated delayed fluorescence in host-guest films. Appl. Phys. Lett. 116, 023302 (2020).

    Article  CAS  Google Scholar 

  25. Ohara, M., Watanabe, T., Tanaka, Y. & Ishii, H. Examination of spontaneous orientation polarization in wet-processed tris(8-hydroxyquinolinato)aluminum film measured by rotary Kelvin probe method. Phys. Status Solidi A 218, 2000790 (2021).

    Article  CAS  Google Scholar 

  26. Kera, S. et al. Characterization of ultrathin films of titanyl phthalocyanine on graphite: PIES and UPS study. Thin Solid Films 327–329, 278–282 (1998).

    Article  Google Scholar 

  27. Mirzehmet, A. et al. Surface termination of solution-processed CH3NH3PbI3 perovskite film examined using electron spectroscopies. Adv. Mater. 33, 2004981 (2021).

    Article  CAS  Google Scholar 

  28. Miyamae, T. et al. Rearrangement of the molecular orientation of Alq3 in organic light-emitting diodes under constant current aging investigated using sum frequency generation spectroscopy. Chem. Phys. Lett. 616–617, 86–90 (2014).

    Article  CAS  Google Scholar 

  29. Feng, S. et al. A comparison study of the organic small molecular thin films prepared by solution process and vacuum deposition: roughness, hydrophilicity, absorption, photoluminescence, density, mobility, and electroluminescence. J. Phys. Chem. C 115, 14278–14284 (2011).

    Article  CAS  Google Scholar 

  30. Kim, H. R., Kim, T.-W. & Park, S.-G. Effective hole-injection characteristics of organic light-emitting diodes due to fluorinated self-assembled monolayer embedded as a buffer layer. Polym. Int. 68, 1478–1483 (2019).

    Article  CAS  Google Scholar 

  31. Hofmann, A. J. L. et al. Dipolar doping of organic semiconductors to enhance carrier injection. Phys. Rev. Appl. 12, 064052 (2019).

    Article  CAS  Google Scholar 

  32. De Boer, B., Hadipour, A., Mandoc, M. M., Van Woudenbergh, T. & Blom, P. W. M. Tuning of metal work functions with self-assembled monolayers. Adv. Mater. 17, 621–625 (2005).

    Article  CAS  Google Scholar 

  33. Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605–625 (1999).

    Article  CAS  Google Scholar 

  34. Campbell, I. H. et al. Controlling charge injection in organic electronic devices using self-assembled monolayers. Appl. Phys. Lett. 71, 3528–3530 (1997).

    Article  CAS  Google Scholar 

  35. Kobayashi, S. et al. Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nat. Mater. 3, 317–322 (2004).

    Article  CAS  Google Scholar 

  36. Suda, M., Kato, R. & Yamamoto, H. M. Light-induced superconductivity using a photoactive electric double layer. Science 347, 743–746 (2015).

    Article  CAS  Google Scholar 

  37. Aghamohammadi, M. et al. Threshold-voltage shifts in organic transistors due to self-assembled monolayers at the dielectric: evidence for electronic coupling and dipolar effects. ACS Appl. Mater. Interfaces 7, 22775–22785 (2015).

    Article  CAS  Google Scholar 

  38. Zhang, L. et al. Origin of enhanced hole injection in organic light-emitting diodes with an electron-acceptor doping layer: p-type doping or interfacial diffusion? ACS Appl. Mater. Interfaces 7, 11965–11971 (2015).

    Article  CAS  Google Scholar 

  39. Kashiwagi, K. et al. Nano-cluster-enhanced high-performance perfluoro-polymer electrets for energy harvesting. J. Micromech. Microeng. 21, 125016 (2011).

    Article  CAS  Google Scholar 

  40. Feng, Y., Zhou, Z., Fu, D. & Ren, W. Velocity-amplified monostable dual-charged electret dome energy harvester using low-speed finger tapping. Appl. Phys. Lett. 116, 063905 (2020).

    Article  CAS  Google Scholar 

  41. Walters, D. M., Antony, L., De Pablo, J. J. & Ediger, M. D. Influence of molecular shape on the thermal stability and molecular orientation of vapor-deposited organic semiconductors. J. Phys. Chem. Lett. 8, 3380–3386 (2017).

    Article  CAS  Google Scholar 

  42. Bangsund, J. S., Van Sambeek, J. R., Concannon, N. M. & Holmes, R. J. Sub-turn-on exciton quenching due to molecular orientation and polarization in organic light-emitting devices. Sci. Adv. 6, eabb2659 (2020).

    Article  CAS  Google Scholar 

  43. Esaki, Y., Tanaka, M., Matsushima, T. & Adachi, C. Active control of spontaneous orientation polarization of tris(8-hydroxyquinolinato)aluminum (Alq3) films and its effect on performance of organic light-emitting diodes. Adv. Electron. Mater. 7, 2100486 (2021).

    Article  CAS  Google Scholar 

  44. Gavra, I. K., Pilidi, A. N. & Tsekouras, A. A. Spontaneous polarization of vapor-deposited 1-butanol films and its dependence on temperature. J. Chem. Phys. 146, 104701 (2017).

    Article  CAS  Google Scholar 

  45. Jiang, J., Walters, D. M., Zhou, D. & Ediger, M. D. Substrate temperature controls molecular orientation in two-component vapor-deposited glasses. Soft Matter 12, 3265–3270 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Kusuhara and N. Nakamura of Kyushu University for preparing chemicals and their thermal analysis. The authors also thank H. Fujimoto, H.-W. Mo and K. Nagayoshi from i3-opera for their help with sample fabrication. This work was supported in part by the Programme for Building Regional Innovation Ecosystems of the Ministry of Education, Culture, Sports, Science and Technology, Japan, the Hoso Bunka Foundation and the Japan Society for the Promotion of Science KAKENHI (grant no. JP21K19010).

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived and designed by M.T. M.T. designed molecules and M.A. synthesized them. H.N. built the experimental set-up for surface potential. M.T. prepared samples and measured their properties. M.T. and H.N. fabricated VPGs. M.T. and H.N. analysed data. All authors contributed to writing the paper and critically commented on the project.

Corresponding authors

Correspondence to Masaki Tanaka, Hajime Nakanotani or Chihaya Adachi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Wolfgang Bruetting, Hirohiko Fukagawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Synthesis, Supplementary Figs. 1–24, Tables 1–3, Notes 1–3 and references.

Source data

Source Data Fig. 3

Thickness dependence of surface potential.

Source Data Fig. 4

Device performance, including current density–voltage characteristics and output current profiles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, M., Auffray, M., Nakanotani, H. et al. Spontaneous formation of metastable orientation with well-organized permanent dipole moment in organic glassy films. Nat. Mater. 21, 819–825 (2022). https://doi.org/10.1038/s41563-022-01265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01265-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing