Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 18, 2022

Review on optofluidic microreactors for photocatalysis

  • Lei Wang , Ziyu Huang ORCID logo , Xiaohui Yang , Lukas Rogée , Xiaowen Huang EMAIL logo , Xuming Zhang and Shu Ping Lau

Abstract

Four interrelated issues have been arising with the development of modern industry, namely environmental pollution, the energy crisis, the greenhouse effect and the global food crisis. Photocatalysis is one of the most promising methods to solve them in the future. To promote high photocatalytic reaction efficiency and utilize solar energy to its fullest, a well-designed photoreactor is vital. Photocatalytic optofluidic microreactors, a promising technology that brings the merits of microfluidics to photocatalysis, offer the advantages of a large surface-to-volume ratio, a short molecular diffusion length and high reaction efficiency, providing a potential method for mitigating the aforementioned crises in the future. Although various photocatalytic optofluidic microreactors have been reported, a comprehensive review of microreactors applied to these four fields is still lacking. In this paper, we review the typical design and development of photocatalytic microreactors in the fields of water purification, water splitting, CO2 fixation and coenzyme regeneration in the past few years. As the most promising tool for solar energy utilization, we believe that the increasing innovation of photocatalytic optofluidic microreactors will drive rapid development of related fields in the future.


Corresponding author: Xiaowen Huang, Department of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China, E-mail:

Funding source: Qilu University of Technology Foundation/Shandong Academy of Sciences Foundation

Award Identifier / Grant number: 202004

Funding source: Shandong Provincial Key Research and Development Project

Award Identifier / Grant number: 2020CXGC011304

Award Identifier / Grant number: 32001020

Award Identifier / Grant number: 82130067

Award Identifier / Grant number: ZR2020QB131

  1. Research funding: This research was funded by Shandong Provincial Key Research and Development Project (2020CXGC011304); National Natural Science Foundation of China (grant nos. 32001020, 82130067); Shandong Provincial Natural Science Foundation (ZR2020QB131); Qilu University of Technology Foundation/Shandong Academy of Sciences Foundation (202004).

  2. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

Accardo, A., Mecarini, F., Leoncini, M., Brandi, F., Di Cola, E., Burghammer, M., Riekel, C., and Di Fabrizio, E. (2013). Fast, active droplet interaction: coalescence and reactive mixing controlled by electrowetting on a superhydrophobic surface. Lab Chip 13: 332–335. https://doi.org/10.1039/c2lc41193h.Search in Google Scholar PubMed

Adleman, J.R., Boyd, D.A., Goodwin, D.G., and Psaltis, D. (2009). Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9: 4417–4423. https://doi.org/10.1021/nl902711n.10.1021/nl902711nSearch in Google Scholar PubMed

Ahsan, S.S., Gumus, A., and Erickson, D. (2013). Redox mediated photocatalytic water-splitting in optofluidic microreactors. Lab Chip 13: 409–414. https://doi.org/10.1039/c2lc41129f.Search in Google Scholar PubMed

An, Z., Gao, J., Wang, L., Zhao, X., Yao, H., Zhang, M., Tian, Q., and Liu, Y. (2019). Novel microreactors of polyacrylamide (PAM)-CdS microgels for admirable photocatalytic H2 production under visible light. Int. J. Hydrogen Energy 44: 1514–1524, doi:https://doi.org/10.1016/j.ijhydene.2018.11.211.Search in Google Scholar

Augugliaro, V., Litter, M., Palmisano, L., and Soria, J. (2006). The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J. Photochem. Photobiol. C Photochem. Rev. 7: 127–144, doi:https://doi.org/10.1016/j.jphotochemrev.2006.12.001.Search in Google Scholar

Azzouz, I., Habba, Y.G., Capochichi-Gnambodoe, M., Marty, F., Vial, J., Leprince-Wang, Y., and Bourouina, T. (2018). Zinc oxide nano-enabled microfluidic reactor for water purification and its applicability to volatile organic compounds. Microsyst. Nanoeng. 4: 1–7. https://doi.org/10.1038/micronano.2017.93.Search in Google Scholar

Behnajady, M.A., Modirshahla, N., Daneshvar, N., and Rabbani, M. (2007). Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates. Chem. Eng. J. 127: 167–176. https://doi.org/10.1016/j.cej.2006.09.013.Search in Google Scholar

Cassano, A.E., Martín, C.A., Brandi, R.J., and Alfano, O.M. (1995). Photoreactor analysis and design: fundamentals and applications. Ind. Eng. Chem. Res. 34: 2155–2201. https://doi.org/10.1021/ie00046a001.Search in Google Scholar

Castedo, A., Casanovas, A., Angurell, I., Soler, L., and Llorca, J. (2018). Effect of temperature on the gas-phase photocatalytic H2 generation using microreactors under UVA and sunlight irradiation. Fuel 222: 327–333. https://doi.org/10.1016/j.fuel.2018.02.128.Search in Google Scholar

Chen, Y.L., Kuo, L.C., Tseng, M.L., Chen, H.M., Chen, C.K., Huang, H.J., Liu, R.S., and Tsai, D.P. (2013). ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange. Opt Express 21: 7240. https://doi.org/10.1364/oe.21.007240.Search in Google Scholar

Chen, R., Li, L., Zhu, X., Wang, H., Liao, Q., and Zhang, M.X. (2015). Highly-durable optofluidic microreactor for photocatalytic water splitting. Energy 83: 797–804. https://doi.org/10.1016/j.energy.2015.02.097.Search in Google Scholar

Chen, R., Cheng, X., Zhu, X., Liao, Q., An, L., Ye, D., He, X., and Wang, Z. (2017a). High-performance optofluidic membrane microreactor with a mesoporous CdS/TiO2/SBA-15@carbon paper composite membrane for the CO2 photoreduction. Chem. Eng. J. 316: 911–918. https://doi.org/10.1016/j.cej.2017.02.044.Search in Google Scholar

Chen, S., Takata, T., and Domen, K. (2017b). Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2: 1–17. https://doi.org/10.1038/natrevmats.2017.50.Search in Google Scholar

Chen, R., Feng, H., Zhu, X., Liao, Q., Ye, D., Liu, J., Liu, M., Chen, G., and Wang, K. (2018). Interaction of the Taylor flow behaviors and catalytic reaction inside a gas-liquid-solid microreactor under long-term operation. Chem. Eng. Sci. 175: 175–184. https://doi.org/10.1016/j.ces.2017.09.049.Search in Google Scholar

Cheng, X., Chen, R., Zhu, X., Liao, Q., He, X., Li, S., and Li, L. (2016). Optofluidic membrane microreactor for photocatalytic reduction of CO2. Int. J. Hydrogen Energy 41: 2457–2465. https://doi.org/10.1016/j.ijhydene.2015.12.066.Search in Google Scholar

Cheng, M., Yang, S., Chen, R., Zhu, X., Liao, Q., and Huang, Y. (2017). Copper-decorated TiO2 nanorod thin films in optofluidic planar reactors for efficient photocatalytic reduction of CO2. Int. J. Hydrogen Energy 42: 9722–9732. https://doi.org/10.1016/j.ijhydene.2017.01.126.Search in Google Scholar

Chong, M.N., Jin, B., Chow, C.W.K., and Saint, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water Res. 44: 2997–3027. https://doi.org/10.1016/j.watres.2010.02.039.Search in Google Scholar PubMed

Christopher, P., Xin, H., and Linic, S. (2011). Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3: 467–472. https://doi.org/10.1038/nchem.1032.Search in Google Scholar PubMed

Ciésla, P., Kocot, P., Mytych, P., and Stasicka, Z. (2004). Homogeneous photocatalysis by transition metal complexes in the environment. J. Mol. Catal. Chem. 224: 17–33, doi:https://doi.org/10.1016/j.molcata.2004.08.043.Search in Google Scholar

Collin, W.R., Scholten, K.W., Fan, X., Paul, D., Kurabayashi, K., and Zellers, E.T. (2016). Polymer-coated micro-optofluidic ring resonator detector for a comprehensive two-dimensional gas chromatographic microsystem: μGC×μGC-μOFRR. Analyst 141: 261–269. https://doi.org/10.1039/c5an01570g.Search in Google Scholar PubMed

Coyle, E.E. and Oelgemöller, M. (2008). Micro-photochemistry: photochemistry in microstructured reactors. The new photochemistry of the future? Photochem. Photobiol. Sci. 7: 1313. https://doi.org/10.1039/b808778d.Search in Google Scholar PubMed

Davis, S.J. and Caldeira, K. (2010). Consumption-based accounting of CO2 emissions. Proc. Natl. Acad. Sci. U.S.A. 107: 5687–5692. https://doi.org/10.1073/pnas.0906974107.Search in Google Scholar PubMed PubMed Central

De Sá, D.S., Marinkovic, B.A., Romani, E.C., Rosso, T.D., de Souza, R.O.M.A., Massi, A., and Pandoli, O. (2016). Prototyping of meso- and microfluidic devices with embedded TiO2 photocatalyst for photodegradation of an organic dye. J. Flow Chem. 6: 101–109.10.1556/1846.2015.00043Search in Google Scholar

De Sá, D.S., Vasconcelos, L.E., de Souza, J.R., Marinkovic, B.A., Del Rosso, T., Fulvio, D., Maza, D., Massi, A., and Pandoli, O. (2018). Intensification of photocatalytic degradation of organic dyes and phenol by scale-up and numbering-up of meso- and microfluidic TiO2 reactors for wastewater treatment. J. Photochem. Photobiol., A 364: 59–75.10.1016/j.jphotochem.2018.05.020Search in Google Scholar

Denny, F., Scott, J., Peng, G.D., and Amal, R. (2010). Channelled optical fibre photoreactor for improved air quality control. Chem. Eng. Sci. 65: 882–889. https://doi.org/10.1016/j.ces.2009.09.038.Search in Google Scholar

Dionysiou, D.D., Khodadoust, A.P., Kern, A.M., Suidan, M.T., Baudin, I., and Laîné, J.M. (2000). Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor. Appl. Catal., B 24: 139–155. https://doi.org/10.1016/s0926-3373(99)00103-4.Search in Google Scholar

Dodman, D. (2009). Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environ. Urbanization 21: 185–201. https://doi.org/10.1177/0956247809103016.Search in Google Scholar

Elvira, K.S., Solvas, I.X.C., Wootton, R.C.R., and Demello, A.J. (2013). The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 5: 905–915. https://doi.org/10.1038/nchem.1753.Search in Google Scholar PubMed

Erickson, D., Sinton, D., and Psaltis, D. (2011). Optofluidics for energy applications. Nat. Photonics 5: 583–590. https://doi.org/10.1038/nphoton.2011.209.Search in Google Scholar

Fajrina, N. and Tahir, M. (2019). A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrogen Energy 44: 540–577. https://doi.org/10.1016/j.ijhydene.2018.10.200.Search in Google Scholar

Fan, X. and White, I.M. (2011). Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 5: 591–597. https://doi.org/10.1038/nphoton.2011.206.Search in Google Scholar PubMed PubMed Central

Fan, X. and Yun, S.H. (2014). The potential of optofluidic biolasers. Nat. Methods 11: 141–147. https://doi.org/10.1038/nmeth.2805.Search in Google Scholar PubMed PubMed Central

Gemoets, H.P.L., Su, Y., Shang, M., Hessel, V., Luque, R., and Noël, T. (2016). Liquid phase oxidation chemistry in continuous-flow microreactors. Chem. Soc. Rev. 45: 83–117. https://doi.org/10.1039/c5cs00447k.Search in Google Scholar PubMed

Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., and Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science 327: 812–818. https://doi.org/10.1126/science.1185383.Search in Google Scholar PubMed

Gorkin, R., Park, J., Siegrist, J., Amasia, M., Lee, B.S., Park, J.M., Kim, J., Kim, H., Madou, M., and Cho, Y.K. (2010). Centrifugal microfluidics for biomedical applications. Lab Chip 10: 1758–1773. https://doi.org/10.1039/b924109d.Search in Google Scholar PubMed

Gupta, N.M. (2017). Factors affecting the efficiency of a water splitting photocatalyst: a perspective. Renew. Sustain. Energy Rev. 71: 585–601. https://doi.org/10.1016/j.rser.2016.12.086.Search in Google Scholar

Gust, D., Moore, T.A., and Moore, A.L. (2009). Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42: 1890–1898. https://doi.org/10.1021/ar900209b.Search in Google Scholar PubMed

Han, Z., Li, J., He, W., Li, S., Li, Z., Chu, J., and Chen, Y. (2013). A microfluidic device with integrated ZnO nanowires for photodegradation studies of methylene blue under different conditions. Microelectron. Eng. 111: 199–203. https://doi.org/10.1016/j.mee.2013.03.154.Search in Google Scholar

Herrmann, J.M. (1999). Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53: 115–129. https://doi.org/10.1016/s0920-5861(99)00107-8.Search in Google Scholar

Hisatomi, T., Kubota, J., and Domen, K. (2014). Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43: 7520–7535. https://doi.org/10.1039/c3cs60378d.Search in Google Scholar PubMed

Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., and Herrmann, J.M. (2001). Photocatalytic degradation pathway of methylene blue in water. Appl. Catal., B 31: 145–157. https://doi.org/10.1016/s0926-3373(00)00276-9.Search in Google Scholar

Huang, X., Hui, W., Hao, C., Yue, W., Yang, M., Cui, Y., and Wang, Z. (2014). On-site formation of emulsions by controlled air plugs. Small 10: 758–765. https://doi.org/10.1002/smll.201202659.Search in Google Scholar PubMed

Huang, X., Liu, J., Yang, Q., Liu, Y., Zhu, Y., Li, T., Tsang, Y.H., and Zhang, X. (2016a). Microfluidic chip-based one-step fabrication of an artificial photosystem I for photocatalytic cofactor regeneration. RSC Adv. 6: 101974–101980. https://doi.org/10.1039/c6ra21390a.Search in Google Scholar

Huang, X., Yue, W., Liu, D., Yue, J., Li, J., Sun, D., Yang, M., and Wang, Z. (2016b). Monitoring the intracellular calcium response to a dynamic hypertonic environment. Sci. Rep. 6: 1–8. https://doi.org/10.1038/srep23591.Search in Google Scholar PubMed PubMed Central

Huang, X., Hao, H., Liu, Y., Zhu, Y., and Zhang, X. (2017). Rapid screening of graphitic carbon nitrides for photocatalytic cofactor regeneration using a drop reactor. Micromachines 8: 175. https://doi.org/10.3390/mi8060175.Search in Google Scholar

Huang, X., Wang, J., Li, T., Wang, J., Xu, M., Yu, W., El Abed, A., and Zhang, X. (2018). Review on optofluidic microreactors for artificial photosynthesis. Beilstein J. Nanotechnol. 9: 30–41. https://doi.org/10.3762/bjnano.9.5.Search in Google Scholar PubMed PubMed Central

Jafari, T., Moharreri, E., Amin, A.S., Miao, R., Song, W., and Suib, S.L. (2016). Photocatalytic water splitting-The untamed dream: a review of recent advances. Molecules 21: 900. https://doi.org/10.3390/molecules21070900.Search in Google Scholar PubMed PubMed Central

Jayamohan, H., Smith, Y.R., Hansen, L.C., Mohanty, S.K., Gale, B.K., and Misra, M. (2015). Anodized titania nanotube array microfluidic device for photocatalytic application: experiment and simulation. Appl. Catal., B 174–175: 167–175. https://doi.org/10.1016/j.apcatb.2015.02.041.Search in Google Scholar

Jayamohan, H., Smith, Y.R., Gale, B.K., Mohanty, S.K., and Misra, M. (2016). Photocatalytic microfluidic reactors utilizing titania nanotubes on titanium mesh for degradation of organic and biological contaminants. J. Environ. Chem. Eng. 4: 657–663. https://doi.org/10.1016/j.jece.2015.12.018.Search in Google Scholar

Ji, X., Su, Z., Wang, P., Ma, G., and Zhang, S. (2016). Integration of artificial photosynthesis system for enhanced electronic energy-transfer efficacy: a case study for solar-energy driven bioconversion of carbon dioxide to methanol. Small 12: 4753–4762. https://doi.org/10.1002/smll.201600707.Search in Google Scholar PubMed

Jia, H., Wong, Y.L., Jian, A., Tsoi, C.C., Wang, M., Li, W., Zhang, W., Sang, S., and Zhang, X. (2019). Microfluidic reactors for plasmonic photocatalysis using gold nanoparticles. Micromachines 10: 869. https://doi.org/10.3390/mi10120869.Search in Google Scholar PubMed PubMed Central

Jin, H.J., Sang, D.K., Tak, H.L., and Dong, H.L. (2005). Degradation of trichloroethylene by photocatalysis in an internally circulating slurry bubble column reactor. Chemosphere 60: 1162–1168.10.1016/j.chemosphere.2004.12.058Search in Google Scholar PubMed

Kalamaras, E., Maroto-Valer, M., Xuan, J., and Wang, H. (2017). A microfluidic reactor for solar fuel production from photocatalytic CO2 reduction. Energy Proc. 142: 501–506. https://doi.org/10.1016/j.egypro.2017.12.078.Search in Google Scholar

Kalamaras, E., Belekoukia, M., Tan, J.Z.Y., Xuan, J., Maroto-Valer, M.M., and Andresen, J.M. (2019). A microfluidic photoelectrochemical cell for solar-driven CO2 conversion into liquid fuels with CuO-based photocathodes. Faraday Discuss 215: 329–344. https://doi.org/10.1039/c8fd00192h.Search in Google Scholar PubMed

Kim, D., Sakimoto, K.K., Hong, D., and Yang, P. (2015). Artificial photosynthesis for sustainable fuel and chemical production. Angew. Chem. Int. Ed. 54: 3259–3266. https://doi.org/10.1002/anie.201409116.Search in Google Scholar PubMed

Ku, Y., Ma, C.M., and Shen, Y.S. (2001). Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile. Appl. Catal., B 34: 181–190. https://doi.org/10.1016/s0926-3373(01)00216-8.Search in Google Scholar

Kudo, A. and Miseki, Y. (2009). Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38: 253–278. https://doi.org/10.1039/b800489g.Search in Google Scholar PubMed

Leblebici, M.E., Stefanidis, G.D., and Van Gerven, T. (2015). Comparison of photocatalytic space-time yields of 12 reactor designs for wastewater treatment. Chem. Eng. Process 97: 106–111. https://doi.org/10.1016/j.cep.2015.09.009.Search in Google Scholar

Lee, S.Y. and Park, S.J. (2013). TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 19: 1761–1769. https://doi.org/10.1016/j.jiec.2013.07.012.Search in Google Scholar

Lee, J.C., Kim, M.S., and Kim, B.W. (2002). Removal of paraquat dissolved in a photoreactor with TiO2 immobilized on the glass-tubes of UV lamps. Water Res. 36: 1776–1782. https://doi.org/10.1016/s0043-1354(01)00378-5.Search in Google Scholar PubMed

Lee, J.S., Lee, S.H., Kim, J.H., and Park, C.B. (2011a). Artificial photosynthesis on a chip: microfluidic cofactor regeneration and photoenzymatic synthesis under visible light. Lab Chip 11: 2309–2311. https://doi.org/10.1039/c1lc20303g.Search in Google Scholar PubMed

Lee, S.H., Ryu, J., Nam, D.H., and Park, C.B. (2011b). Photoenzymatic synthesis through sustainable NADH regeneration by SiO2-supported quantum dots. Chem. Commun. 47: 4643–4645. https://doi.org/10.1039/c0cc05246a.Search in Google Scholar PubMed

Lee, S.H., Kim, J.H., and Park, C.B. (2013). Coupling photocatalysis and redox biocatalysis toward biocatalyzed artificial photosynthesis. Chem. Eur J. 19: 4392–4406. https://doi.org/10.1002/chem.201204385.Search in Google Scholar PubMed

Lei, L., Wang, N., Zhang, X.M., Tai, Q., Tsai, D.P., and Chan, H.L.W. (2010). Optofluidic planar reactors for photocatalytic water treatment using solar energy. Biomicrofluidics 4: 043004. https://doi.org/10.1063/1.3491471.Search in Google Scholar PubMed PubMed Central

Li, L., Chen, R., Zhu, X., Wang, H., Wang, Y., Liao, Q., and Wang, D. (2013). Optofluidic microreactors with TiO2-coated fiberglass. ACS Appl. Mater. Interfaces 5: 12548–12553. https://doi.org/10.1021/am403842b.Search in Google Scholar PubMed

Li, L., Chen, R., Liao, Q., Zhu, X., Wang, G., and Wang, D. (2014). High surface area optofluidic microreactor for redox mediated photocatalytic water splitting. Int. J. Hydrogen Energy 39: 19270–19276. https://doi.org/10.1016/j.ijhydene.2014.05.098.Search in Google Scholar

Li, Y., Lin, B., Ge, L., Guo, H., Chen, X., and Lu, M. (2016). Real-time spectroscopic monitoring of photocatalytic activity promoted by graphene in a microfluidic reactor. Sci. Rep. 6: 1–9. https://doi.org/10.1038/srep28803.Search in Google Scholar PubMed PubMed Central

Lin, H. and Valsaraj, K.T. (2005). Development of an optical fiber monolith reactor for photocatalytic wastewater treatment. J. Appl. Electrochem. 35: 699–708. https://doi.org/10.1007/s10800-005-1364-x.Search in Google Scholar

Lin, Y., Yuan, G., Liu, R., Zhou, S., Sheehan, S.W., and Wang, D. (2011). Semiconductor nanostructure-based photoelectrochemical water splitting: a brief review. Chem. Phys. Lett. 507: 209–215. https://doi.org/10.1016/j.cplett.2011.03.074.Search in Google Scholar

Lin, S., Liu, Y., Hu, Z., Lu, W., Mak, C.H., Zeng, L., Zhao, J., Li, Y., Yan, F., Tsang, Y.H., et al.. (2017). Tunable active edge sites in PtSe2 films towards hydrogen evolution reaction. Nano Energy 42: 26–33. https://doi.org/10.1016/j.nanoen.2017.10.038.Search in Google Scholar

Lin, S., Sun, S., Wang, K., Shen, K., Ma, B., Ren, Y., and Fan, X. (2018). Bioinspired design of alcohol dehydrogenase@nano TiO2 microreactors for sustainable cycling of NAD+/NADH coenzyme. Nanomaterials 8: 1–9. https://doi.org/10.3390/nano8020127.Search in Google Scholar PubMed PubMed Central

Linic, S., Christopher, P., and Ingram, D.B. (2011). Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10: 911–921. https://doi.org/10.1038/nmat3151.Search in Google Scholar PubMed

Liou, P.Y., Chen, S.C., Wu, J.C.S., Liu, D., MacKintosh, S., Maroto-Valer, M., and Linforth, R. (2011). Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy Environ. Sci. 4: 1487–1494. https://doi.org/10.1039/c0ee00609b.Search in Google Scholar

Liu, C., Dasgupta, N.P., and Yang, P. (2014a). Semiconductor nanowires for artificial photosynthesis. Chem. Mater. 26: 415–422. https://doi.org/10.1021/cm4023198.Search in Google Scholar

Liu, J., Huang, J., Zhou, H., and Antonietti, M. (2014b). Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis. ACS Appl. Mater. Interfaces 6: 8434–8440. https://doi.org/10.1021/am501319v.Search in Google Scholar PubMed

Lu, H., Schmidt, M.A., and Jensen, K.F. (2001). Photochemical reactions and on-line UV detection in microfabricated reactors. Lab Chip 1: 22–28. https://doi.org/10.1039/b104037p.Search in Google Scholar PubMed

Lu, D., Zhang, M., Zhang, Z., Li, Q., Wang, X., and Yang, J. (2014). Self-organized vanadium and nitrogen co-doped titania nanotube arrays with enhanced photocatalytic reduction of CO2 into CH4. Nanoscale Res. Lett. 9: 1–9. https://doi.org/10.1186/1556-276X-9-272.Search in Google Scholar PubMed PubMed Central

Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., and Li, C. (2014). Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114: 9987–10043. https://doi.org/10.1021/cr500008u.Search in Google Scholar PubMed

Ma, K., Yehezkeli, O., Park, E., and Cha, J.N. (2016). Enzyme mediated increase in methanol production from photoelectrochemical cells and CO2. ACS Catal. 6: 6982–6986. https://doi.org/10.1021/acscatal.6b02524.Search in Google Scholar

Mak, X.Y., Laurino, P., and Seeberger, P.H. (2009). Asymmetric reactions in continuous flow. Beilstein J. Org. Chem. 5: 3–6. https://doi.org/10.3762/bjoc.5.19.Search in Google Scholar PubMed PubMed Central

Martin, M.V., Alfano, O.M., and Satuf, M.L. (2019). Cerium-doped TiO2 thin films: assessment of radiation absorption properties and photocatalytic reaction efficiencies in a microreactor. J. Environ. Chem. Eng. 7: 103478. https://doi.org/10.1016/j.jece.2019.103478.Search in Google Scholar

McCullagh, C., Skillen, N., Adams, M., and Robertson, P.K.J. (2011). Photocatalytic reactors for environmental remediation: a review. J. Chem. Technol. Biotechnol. 86: 1002–1017. https://doi.org/10.1002/jctb.2650.Search in Google Scholar

Mehendale, S.S., Jacobi, A.M., and Shah, R.K. (1999). Meso- and micro-scale Frontiers of compact heat exchangers. Springer, Berlin, pp. 139–158.10.1007/978-3-642-58496-1_9Search in Google Scholar

Mehendale, S.S., Jacobi, A.M., and Shah, R.K. (2000). Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design. Appl. Mech. Rev. 53: 175–193.10.1115/1.3097347Search in Google Scholar

Meng, Z., Zhang, X., and Qin, J. (2013). A high efficiency microfluidic-based photocatalytic microreactor using electrospun nanofibrous TiO2 as a photocatalyst. Nanoscale 5: 4687–4690. https://doi.org/10.1039/c3nr00775h.Search in Google Scholar PubMed

Midilli, A., Ay, M., Dincer, I., and Rosen, M.A. (2005). On hydrogen and hydrogen energy strategies I : current status and needs. Renew. Sustain. Energy Rev. 9: 255–271. https://doi.org/10.1016/j.rser.2004.05.003.Search in Google Scholar

Miller, T.E., Beneyton, T., Schwander, T., Diehl, C., Girault, M., McLean, R., Chotel, T., Claus, P., Cortina, N.S., Baret, J., et al.. (2020). Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts. Science 368: 649–654. https://doi.org/10.1126/science.aaz6802.Search in Google Scholar PubMed PubMed Central

Nagamine, S. (2020). Photocatalytic microreactor using TiO2/Ti plates: formation of TiO2 nanostructure and separation of oxidation/reduction into different channels. Adv. Powder Technol. 31: 521–527. https://doi.org/10.1016/j.apt.2019.11.008.Search in Google Scholar

Nagamine, S. and Inohara, K. (2018). Photocatalytic microreactor using anodized TiO2 nanotube array. Adv. Powder Technol. 29: 3100–3106. https://doi.org/10.1016/j.apt.2018.08.013.Search in Google Scholar

Nguyen, T.V. and Wu, J.C.S. (2008). Photoreduction of CO2 in an optical-fiber photoreactor: effects of metals addition and catalyst carrier. Appl. Catal., A 335: 112–120. https://doi.org/10.1016/j.apcata.2007.11.022.Search in Google Scholar

Oelgemoeller, M. (2012). Highlights of photochemical reactions in microflow reactors. Chem. Eng. Technol. 35: 1144–1152. https://doi.org/10.1002/ceat.201200009.Search in Google Scholar

Ola, O. and Maroto-Valer, M.M. (2015). Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol., A C 24: 16–42.10.1016/j.jphotochemrev.2015.06.001Search in Google Scholar

Oelgemöller, M. and Shvydkiv, O. (2011). Recent advances in microflow photochemistry. Molecules 16: 7522–7550.10.3390/molecules16097522Search in Google Scholar PubMed PubMed Central

Parmar, J., Jang, S., Soler, L., Kim, D.P., and Sánchez, S. (2015). Nano-photocatalysts in microfluidics, energy conversion and environmental applications. Lab Chip 15: 2352–2356. https://doi.org/10.1039/c5lc90047f.Search in Google Scholar PubMed

Parrino, F. and Palmisano, G. (2021). Highlights on recent developments of heterogeneous and homogeneous photocatalysis. Molecules 26: 5–7, doi:https://doi.org/10.3390/molecules26010023.Search in Google Scholar PubMed PubMed Central

Potti, P.R. and Srivastava, V.C. (2012). Comparative studies on structural, optical, and textural properties of combustion derived ZnO prepared using various fuels and their photocatalytic activity. Ind. Eng. Chem. Res. 51: 7948–7956. https://doi.org/10.1021/ie300478y.Search in Google Scholar

Priyanka and Srivastava, V.C. (2013). Photocatalytic oxidation of dye bearing wastewater by iron doped zinc oxide. Ind. Eng. Chem. Res. 52: 17790–17799. https://doi.org/10.1021/ie401973r.Search in Google Scholar

Psaltis, D., Quake, S.R., and Yang, C. (2006). Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442: 381–386. https://doi.org/10.1038/nature05060.Search in Google Scholar PubMed

Qin, S., Xin, F., Liu, Y., Yin, X., and Ma, W. (2011). Photocatalytic reduction of CO2 in methanol to methyl formate over CuO-TiO2 composite catalysts. J. Colloid Interface Sci. 356: 257–261. https://doi.org/10.1016/j.jcis.2010.12.034.Search in Google Scholar PubMed

Russo, D. (2021). Kinetic modeling of advanced oxidation processes using microreactors: challenges and opportunities for scale-up. Appl. Sci. 11: 1–19. https://doi.org/10.3390/app11031042.Search in Google Scholar

Ryu, J., Lee, S.H., Nam, D.H., and Park, C.B. (2011). Rational design and engineering of quantum-dot-sensitized TiO2 nanotube arrays for artificial photosynthesis. Adv. Mater. 23: 1883–1888. https://doi.org/10.1002/adma.201004576.Search in Google Scholar PubMed

Sakimoto, K.K., Wong, A.B., and Yang, P. (2016). Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351: 74–77. https://doi.org/10.1126/science.aad3317.Search in Google Scholar PubMed

Schwander, T., Schada von Borzyskowski, L., Burgener, S., Cortina, N.S., and Erb, T.J. (2016). A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354: 900–904. https://doi.org/10.1126/science.aah5237.Search in Google Scholar PubMed PubMed Central

Shafiq, I., Shafique, S., Akhter, P., Abbas, G., Qurashi, A., and Hussain, M. (2021). Efficient catalyst development for deep aerobic photocatalytic oxidative desulfurization: recent advances, confines, and outlooks. Catal. Rev. Sci. Eng. 1–46, doi:https://doi.org/10.1080/01614940.2020.1864859.Search in Google Scholar

Shvydkiv, O., Yavorskyy, A., Tan, S.B., Nolan, K., Hoffmann, N., Youssef, A., and Oelgemöller, M. (2011). Microphotochemistry: a reactor comparison study using the photosensitized addition of isopropanol to furanones as a model reaction. Photochem. Photobiol. Sci. 10: 1399–1404. https://doi.org/10.1039/c1pp05024a.Search in Google Scholar PubMed

Simms, R., Dubinsky, S., Yudin, A., and Kumacheva, E. (2009). A method for fabricating microfluidic electrochemical reactors. Lab Chip 9: 2395–2397. https://doi.org/10.1039/b904962b.Search in Google Scholar PubMed

Su, J. and Vayssieres, L. (2016). A place in the sun for artificial photosynthesis? ACS Energy Lett. 1: 121–135. https://doi.org/10.1021/acsenergylett.6b00059.Search in Google Scholar

Su, Y., Zhu, Y., and Fang, Q. (2013). A multifunctional microfluidic droplet-array chip for analysis by electrospray ionization mass spectrometry. Lab Chip 13: 1876. https://doi.org/10.1039/c3lc00063j.Search in Google Scholar PubMed

Sun, M. and Fang, Q. (2010). High-throughput sample introduction for droplet-based screening with an on-chip integrated sampling probe and slotted-vial array. Lab Chip 10: 2864–2868. https://doi.org/10.1039/c005290f.Search in Google Scholar PubMed

Tan, S.S., Zou, L., and Hu, E. (2006). Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catal. Today 115: 269–273. https://doi.org/10.1016/j.cattod.2006.02.057.Search in Google Scholar

Tao, Y., Wu, L., Zhao, X., Chen, X., Li, R., Chen, M., Zhang, D., Li, G., and Li, H. (2019). Strong hollow spherical La2NiO4 photocatalytic microreactor for round-the-clock environmental remediation. ACS Appl. Mater. Interfaces 11: 25967–25975. https://doi.org/10.1021/acsami.9b07216.Search in Google Scholar PubMed

Tian, Y., Zhou, Y., Zong, Y., Li, J., Yang, N., Zhang, M., Guo, Z., and Song, H. (2020). Construction of functionally compartmental inorganic photocatalyst-enzyme system via imitating chloroplast for efficient photoreduction of CO2 to formic acid. ACS Appl. Mater. Interfaces 12: 34795–34805. https://doi.org/10.1021/acsami.0c06684.Search in Google Scholar PubMed

Tsuchiya, N., Kuwabara, K., Hidaka, A., Oda, K., and Katayama, K. (2012). Reaction kinetics of dye decomposition processes monitored inside a photocatalytic microreactor. Phys. Chem. Chem. Phys. 14: 4734–4741. https://doi.org/10.1039/c2cp23979e.Search in Google Scholar PubMed

Ulmer, U., Dingle, T., Duchesne, P.N., Morris, R.H., Tavasoli, A., Wood, T., and Ozin, G.A. (2019). Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 10: 1–12. https://doi.org/10.1038/s41467-019-10996-2.Search in Google Scholar PubMed PubMed Central

Van Gerven, T., Mul, G., Moulijn, J., and Stankiewicz, A. (2007). A review of intensification of photocatalytic processes. Chem. Eng. Process 46: 781–789. https://doi.org/10.1016/j.cep.2007.05.012.Search in Google Scholar

Vesborg, P.C.K., In, S., Olsen, J.L., Henriksen, T.R., Abrams, B.L., Hou, Y., Kleiman-Shwarsctein, A., Hansen, O., and Chorkendorff, I. (2010). Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in μ-reactors. J. Phys. Chem. C 114: 11162–11168. https://doi.org/10.1021/jp100552x.Search in Google Scholar

Wang, W. and Ku, Y. (2003). Photocatalytic degradation of gaseous benzene in air streams by using an optical fiber photoreactor. J. Photochem. Photobiol., A 159: 47–59. https://doi.org/10.1016/s1010-6030(03)00111-4.Search in Google Scholar

Wang, Z.Y., Chou, H.C., Wu, J.C.S., Ping Tsai, D., Mul, G., and Engineering, C. (2010). CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy. Appl. Catal., A 380: 172–177. https://doi.org/10.1016/j.apcata.2010.03.059.Search in Google Scholar

Wang, N., Zhang, X., Chen, B., Song, W., Chan, N.Y., and Chan, H.L.W. (2012). Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source. Lab Chip 12: 3983–3990. https://doi.org/10.1039/c2lc40428a.Search in Google Scholar PubMed

Wang, N., Zhang, X., Wang, Y., Yu, W., and Chan, H.L.W. (2014). Microfluidic reactors for photocatalytic water purification. Lab Chip 14: 1074–1082. https://doi.org/10.1039/c3lc51233a.Search in Google Scholar PubMed

Wang, Q., Nakabayashi, M., Hisatomi, T., Sun, S., Akiyama, S., Wang, Z., Pan, Z., Xiao, X., Watanabe, T., Yamada, T., et al.. (2019a). Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat. Mater. 18: 827–832. https://doi.org/10.1038/s41563-019-0399-z.Search in Google Scholar PubMed

Wang, Y., Vogel, A., Sachs, M., Sprick, R.S., Wilbraham, L., Moniz, S.J.A., Godin, R., Zwijnenburg, M.A., Durrant, J.R., Cooper, A.I., et al.. (2019b). Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 4: 746–760. https://doi.org/10.1038/s41560-019-0456-5.Search in Google Scholar

Wang, Y., Wang, S., and Lou, X.W. (2019c). Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 58: 17236–17240. https://doi.org/10.1002/anie.201909707.Search in Google Scholar PubMed

Whipple, D.T., Finke, E.C., and Kenis, P.J.A. (2010). Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochem. Solid State Lett. 13: 109–111. https://doi.org/10.1149/1.3456590.Search in Google Scholar

Whitesides, G.M. (2006). The origins and the future of microfluidics. Nature 442: 368–373. https://doi.org/10.1038/nature05058.Search in Google Scholar PubMed

Wu, J.C.S., Lin, H.M., and Lai, C.L. (2005). Photo reduction of CO2 to methanol using optical-fiber photoreactor. Appl. Catal., A 296: 194–200. https://doi.org/10.1016/j.apcata.2005.08.021.Search in Google Scholar

Wu, J.C.S., Wu, T.H., Chu, T., Huang, H., and Tsai, D. (2008). Application of optical-fiber photoreactor for CO2 photocatalytic reduction. Top. Catal. 47: 131–136. https://doi.org/10.1007/s11244-007-9022-7.Search in Google Scholar

Wu, H.Y., Nguyen, N.H., Bai, H., Chang, S.M., and Wu, J.C.S. (2015). Photocatalytic reduction of CO2 using molybdenum-doped titanate nanotubes in a MEA solution. RSC Adv. 5: 63142–63151. https://doi.org/10.1039/c5ra10408d.Search in Google Scholar

Xie, F., Chen, R., Zhu, X., Liao, Q., Ye, D., Zhang, B., Yu, Y., and Li, J. (2019). CO2 utilization: direct power generation by a coupled system that integrates photocatalytic reduction of CO2 with photocatalytic fuel cell. J. CO2 Util. 32: 31–36. https://doi.org/10.1016/j.jcou.2019.03.017.Search in Google Scholar

Yang, D., Zhang, Y., Zhang, S., Cheng, Y., Wu, Y., Cai, Z., Wang, X., Shi, J., and Jiang, Z. (2019). Coordination between electron transfer and molecule diffusion through a bioinspired amorphous titania nanoshell for photocatalytic nicotinamide cofactor regeneration. ACS Catal. 9: 11492–11501. https://doi.org/10.1021/acscatal.9b03462.Search in Google Scholar

Yu, G. and Wang, N. (2020). Gas-liquid-solid interface enhanced photocatalytic reaction in a microfluidic reactor for water treatment. Appl. Catal., A 591: 117410. https://doi.org/10.1016/j.apcata.2020.117410.Search in Google Scholar

Yuan, K., Yang, L., Du, X., and Yang, Y. (2014). Performance analysis of photocatalytic CO2 reduction in optical fiber monolith reactor with multiple inverse lights. Energy Convers. Manag. 81: 98–105. https://doi.org/10.1016/j.enconman.2014.02.027.Search in Google Scholar

Zeng, G., Qiu, J., Li, Z., Pavaskar, P., and Cronin, S.B. (2014). CO2 reduction to methanol on TiO2-passivated GaP photocatalysts. ACS Catal. 4: 3512–3516. https://doi.org/10.1021/cs500697w.Search in Google Scholar

Zhang, H., Wang, J.J., Fan, J., and Fang, Q. (2013). Microfluidic chip-based analytical system for rapid screening of photocatalysts. Talanta 116: 946–950. https://doi.org/10.1016/j.talanta.2013.08.012.Search in Google Scholar PubMed

Zhang, H., Liu, H., Tian, Z., Lu, D., Yu, Y., Cestellos-Blanco, S., Sakimoto, K.K., and Yang, P. (2018). Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 13: 900–905. https://doi.org/10.1038/s41565-018-0267-z.Search in Google Scholar PubMed

Zhang, S., Zhang, J., Sun, J., and Tang, Z. (2020). Capillary microphotoreactor packed with TiO2-coated glass beads: an efficient tool for photocatalytic reaction. Chem. Eng. Process 147: 107746. https://doi.org/10.1016/j.cep.2019.107746.Search in Google Scholar

Zhao, C., Xie, Y., Mao, Z., Zhao, Y., Rufo, J., Yang, S., Guo, F., Mai, J.D., and Huang, T.J. (2014). Theory and experiment on particle trapping and manipulation via optothermally generated bubbles. Lab Chip 14: 384–391. https://doi.org/10.1039/c3lc50748c.Search in Google Scholar PubMed PubMed Central

Zhao, D., He, Z., Wang, G., Wang, H., Zhang, Q., and Li, Y. (2016). A novel efficient ZnO/Zn(OH)F nanofiber arrays-based versatile microfluidic system for the applications of photocatalysis and histidine-rich protein separation. Sens. Actuators, B 229: 281–287. https://doi.org/10.1016/j.snb.2016.01.125.Search in Google Scholar

Zhao, Y., Liu, H., Wu, C., Zhang, Z., Pan, Q., Hu, F., Wang, R., Li, P., Huang, X., and Li, Z. (2019). Fully Conjugated two-dimensional sp2-carbon covalent organic frameworks as artificial photosystem I with high efficiency. Angew. Chem. Int. Ed. 58: 5376–5381. https://doi.org/10.1002/anie.201901194.Search in Google Scholar PubMed

Zhou, N., López-Puente, V., Wang, Q., Polavarapu, L., Pastoriza-Santos, I., and Xu, Q.-H. (2015). Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Adv. 5: 29076–29097. https://doi.org/10.1039/c5ra01819f.Search in Google Scholar

Zhu, Y., Huang, Z., Chen, Q., Wu, Q., Huang, X., So, P.K., Shao, L., Yao, Z., Jia, Y., Li, Z., et al.. (2019). Continuous artificial synthesis of glucose precursor using enzyme-immobilized microfluidic reactors. Nat. Commun. 10: 1–9. https://doi.org/10.1038/s41467-019-12089-6.Search in Google Scholar PubMed PubMed Central

Received: 2021-08-02
Revised: 2022-01-26
Accepted: 2022-03-07
Published Online: 2022-05-18
Published in Print: 2023-07-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2021-0068/html
Scroll to top button