Skip to main content

Advertisement

Log in

Impacts of Using the Rigorous Topographic Gravity Modeling Method and Lateral Density Variation Model on Topographic Reductions and Geoid Modeling: A Case Study in Colorado, USA

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

A Correction to this article was published on 01 July 2022

This article has been updated

Abstract

Until now, the prismatic mass approximation of the topography and the constant density assumption have been mostly utilized in topographic reductions, which are rough approximations of reality and can be avoided. In this study, the more rigorous tesseroidal mass representation of topographic masses and the global lateral topographic density variation model UNB_TopoDens are considered in topographic reductions. Three tesseroidal modeling methods based on different combinations of numerical tesseroidal approaches are developed for precise topographic gravity modeling. The computational performances of the classic prismatic modeling method and new tesseroidal modeling methods in computing the residual terrain modeling (RTM), terrain correction (TC), full topographic, and Airy-Heiskanen (AH) model-based isostatic effects are tested in the Colorado area with rugged topography. In addition, the improvement of computational efficiency achieved by applying the OpenMP parallelizing technique and the contribution of considering the UNB_TopoDens model are investigated. Then, the RTM effects are applied to local geoid modeling to see the geoid model changes caused by using rigorous tesseroidal modeling methods and by considering lateral density variations. The main numerical findings are: (1) The application of the OpenMP parallelization can significantly reduce the computational time, while the efficiency improvement rate depends on the number of used threads; (2) The modeling method effect on the computation of the RTM, TC, full topographic, and AH isostatic effects is smaller than the lateral density variation effect; (3) In the case of using the RTM reduction, the use of the tesseroidal modeling method instead of the prismatic modeling method can cause geoid model differences at the millimeter level, while almost the same standard deviations are obtained by comparing the geoid models to the GSVS17 and historical GNSS-leveling data; (4) the differences in the geoid height due to lateral density variations can reach a magnitude of about 8 cm when using the RTM reduction scheme, while the validation of geoid models at the GSVS17 GNSS-leveling benchmarks revealed that the geoid considering the UNB_TopoDens model has a slightly larger standard deviation than the one using a constant density of \(2.67\;{\text{g}}/{\text{cm}}^{3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

References

  • Abbak RA (2020) Effect of a high-resolution global crustal model on gravimetric geoid determination: a case study in a mountainous region. Stud Geophys Geod 64:436–451

    Article  Google Scholar 

  • Anderson EG (1976) The effect of topography on solution of Stokes’ problem. UNISURV S-14 report, School of Surveying, University of New South Wales, Kensington, Australia

  • Asgharzadeh MF, von Frese RRB, Kim HR, Leftwich TE, Kim JW (2007) Spherical prism gravity effects by Gauss-Legendre quadrature integration. Geophys J Int 169:1–11

    Article  Google Scholar 

  • Bassin C, Laske G, Masters G (2000) The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU 81:F897

    Google Scholar 

  • Bucha B, Janák J, Papčo J, Bezděk A (2016) High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data. Geophys J Int 207:949–966

    Article  Google Scholar 

  • Claessens SJ, Filmer MS (2020) Towards an international height reference system: insights from the Colorado geoid experiment using AUSGeoid computation methods. J Geodesy 94:52

    Article  Google Scholar 

  • Conway JT (2015) Analytical solution from vector potentials for the gravitational field of a general polyhedron. Celest Mech Dyn Astron 121:17–38

    Article  Google Scholar 

  • Denker H (2013) Regional gravity field modeling: theory and practical results. In: Xu G (ed) Sciences of geodesy—II. Springer, Berlin, pp 185–291

    Chapter  Google Scholar 

  • D’Urso MG (2012) New expressions of the gravitational potential and its derivatives for the prism. In: Sneeuw N, Novák P, Crespi M, Sansò F (eds) VII Hotine-Marussi symposium on mathematical geodesy. Springer, Berlin, pp 251–256

    Chapter  Google Scholar 

  • D’Urso MG (2013) On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J Geodesy 87:239–252

    Article  Google Scholar 

  • D’Urso MG (2014a) Analytical computation of gravity effects for polyhedral bodies. J Geodesy 88:13–29

    Article  Google Scholar 

  • D’Urso MG (2014b) Gravity effects of polyhedral bodies with linearly varying density. Celest Mech Dyn Astron 120:349–372

    Article  Google Scholar 

  • D’Urso MG, Trotta S (2015) Comparative assessment of linear and bilinear prism-based strategies for terrain correction computations. J Geodesy 89:199–215

    Article  Google Scholar 

  • D’Urso MG, Trotta S (2017) Gravity anomaly of polyhedral bodies having a polynomial density contrast. Surv Geophys 38:781–832

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356

    Article  Google Scholar 

  • Farr TG, Rosen P, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004

    Article  Google Scholar 

  • Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. OSU Report 355, Department of Geodetic Science and Surveying, Ohio State University, Columbus, Ohio, USA

  • Forsberg R, Tscherning CC (2008) An Overview Manual for the GRAVSOFT Geodetic Gravity Field Modelling Programs. Contract Report for JUPEM. 2nd Edition

  • Fukushima T (2017) Precise and fast computation of the gravitational field of a general finite body and its application to the gravitational study of asteroid eros. Astron J 154:145

    Article  Google Scholar 

  • Fukushima T (2018) Accurate computation of gravitational field of a tesseroid. J Geodesy 92:1371–1386

    Article  Google Scholar 

  • Grombein T, Seitz K, Heck B (2013) Optimized formulas for the gravitational field of a tesseroid. J Geodesy 87:645–660

    Article  Google Scholar 

  • Hartmann J, Moosdorf N (2012) The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem Geophys Geosyst 13:Q12004

    Article  Google Scholar 

  • Heck B (2003) On Helmert’s methods of condensation. J Geodesy 77:155–170

    Article  Google Scholar 

  • Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J Geodesy 81:121–136

    Article  Google Scholar 

  • Heiskanen W, Moritz H (1967) Physical geodesy. Freeman, New York

    Google Scholar 

  • Hinze WJ (2003) Bouguer reduction density, why 2.67? Geophysics 68:1559–1560

    Article  Google Scholar 

  • Holstein H (2003) Gravimagnetic anomaly formulas for polyhedra of spatially linear media. Geophysics 68:157–167

    Article  Google Scholar 

  • Holstein H, Ketteridge B (1996) Gravimetric analysis of uniform polyhedra. Geophysics 61:357–364

    Article  Google Scholar 

  • Holstein H, Schürholz P, Starr AJ, Chakraborty M (1999) Comparison of gravimetric formulas for uniform polyhedra. Geophysics 64:1438–1446

    Article  Google Scholar 

  • Huang J, Vaníček P, Pagiatakis SD, Brink W (2001) Effect of topographical density on geoid in the Canadian Rocky Mountains. J Geodesy 74:805–815

    Article  Google Scholar 

  • Işık MS, Erol B, Erol S, Sakil FF (2021) High-resolution geoid modeling using least squares modification of Stokes and Hotine formulas in Colorado. J Geodesy 95:49

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database. http://srtm.csi.cgiar.org.

  • Jiang L, Zhang J, Feng Z (2017) A versatile solution for the gravity anomaly of 3D prism-meshed bodies with depth-dependent density contrast. Geophysics 82:G77–G86

    Article  Google Scholar 

  • Jiang L, Liu J, Zhang J, Feng Z (2018) Analytic expressions for the gravity gradient tensor of 3D prisms with depth-dependent density. Surv Geophys 39:337–363

    Article  Google Scholar 

  • Jiang T, Dang Y, Zhang C (2020) Gravimetric geoid modeling from the combination of satellite gravity model, terrestrial and airborne gravity data: a case study in the mountainous area, Colorado. Earth, Planets and Space 72:189

    Article  Google Scholar 

  • Kuhn M (2003) Geoid determination with density hypotheses from isostatic models and geological information. J Geodesy 77:50–65

    Article  Google Scholar 

  • Kuhn M, Hirt C (2016) Topographic gravitational potential up to second-order derivatives: an examination of approximation errors caused by rock-equivalent topography (RET). J Geodesy 90:883–902

    Article  Google Scholar 

  • Laske G, Masters G, Ma Z, Pasyanos M (2012) CRUST 1.0: an updated global model of earth’s crust. Geophys Res Abstr 14:EGU2012-3743

    Google Scholar 

  • Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST 1.0—a 1-degree global model of Earth’s crust. Geophys Res Abstr 15:EGU2013-2658

    Google Scholar 

  • Li Z, Hao T, Xu Y, Xu Y (2011) An efficient and adaptive approach for modeling gravity effects in spherical coordinates. J Appl Geophys 73:221–231

    Article  Google Scholar 

  • Lin M, Denker H (2019) On the computation of gravitational effects for tesseroids with constant and linearly varying density. J Geodesy 93:723–747

    Article  Google Scholar 

  • Lin M, Denker H, Müller J (2020) Gravity field modeling using tesseroids with variable density in the vertical direction. Surv Geophys 41:723–765

    Article  Google Scholar 

  • Li X, Ahlgren K, Hardy R, Krcmaric J, Wang Y (2019) The Development and Evaluation of the Experimental Gravimetric Geoid Model 2019. https://beta.ngs.noaa.gov/GEOID/xGEOID19/xGeoid19_tech_details.v10.pdf

  • MacMillan WD (1930) Theoretical mechanics: the theory of the potential, vol 2. McGraw-Hill, New York

    Google Scholar 

  • Mader K (1951) Das Newtonsche Raumpotential prismatischer Körper und seine Ableitungen bis zur dritten Ordnung. Österreichische Zeitschrift für Vermessungswesen Sonderheft 11

  • Marotta AM, Barzaghi R (2017) A new methodology to compute the gravitational contribution of a spherical tesseroid based on the analytical solution of a sector of a spherical zonal band. J Geodesy 91:1207–1224

    Article  Google Scholar 

  • Martinec Z (1993) Effect of lateral density variations of topographical masses in improving geoid model accuracy over Canada. Contract report for Geodetic Survey of Canada, Ottawa

    Google Scholar 

  • Mooney WD, Laske G, Masters TG (1998) CRUST 5.1: A global crustal model at. J Geophys Res 103:727–747

    Article  Google Scholar 

  • Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geodesy 74:552–560

    Article  Google Scholar 

  • Nagy D, Papp G, Benedek J (2002) Corrections to “The gravitational potential and its derivatives for the prism.” J Geodesy 76:475

    Article  Google Scholar 

  • Okabe M (1979) Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies. Geophysics 44:730–741

    Article  Google Scholar 

  • Petrović S (1996) Determination of the potential of homogeneous polyhedral bodies using the line integrals. J Geodesy 71:44–52

    Article  Google Scholar 

  • Pohánka V (1988) Optimum expression for computation of the gravity field of a homogeneous polyhedral body. Geophys Prospect 36:733–751

    Article  Google Scholar 

  • Qiu L, Chen Z (2020) Gravity field of a tesseroid by variable-order Gauss-Legendre quadrature. J Geodesy 94:114

    Article  Google Scholar 

  • Rathnayake S, Tenzer R, Pitoňák M, Novák P (2020) Effect of the lateral topographic density distribution on interpretational properties of Bouguer gravity maps. Geophys J Int 220:892–909

    Google Scholar 

  • Ren Z, Chen C, Pan K, Kalscheuer T, Maurer H, Tang J (2017) Gravity anomalies of arbitrary 3D polyhedral bodies with horizontal and vertical mass contrasts. Surv Geophys 38:479–502

    Article  Google Scholar 

  • Ren Z, Zhong Y, Chen C, Tang J, Kalscheuer T, Maurer H, Li Y (2018a) Gravity gradient tensor of arbitrary 3D polyhedral bodies with up to third-order polynomial horizontal and vertical mass contrasts. Surv Geophys 39:901–935

    Article  Google Scholar 

  • Ren Z, Zhong Y, Chen C, Tang J, Pan K (2018b) Gravity anomalies of arbitrary 3D polyhedral bodies with horizontal and vertical mass contrasts up to cubic order. Geophysics 83:G1–G13

    Article  Google Scholar 

  • Ren Z, Chen C, Zhong Y, Chen H, Kalscheuer T, Maurer H, Tang J, Hu X (2020) Recursive analytical formulae of gravitational fields and gradient tensor for polyhedral bodies with polynomial density contrasts of arbitrary non-negative integer order. Surv Geophys 41:695–722

    Article  Google Scholar 

  • Santos MC, Vaníček P, Featherstone WE, Kingdon R, Ellmann A, Martin BA, Kuhn M, Tenzer R (2006) The relation between rigorous and Helmert’s definitions of orthometric heights. J Geodesy 80:691–704

    Article  Google Scholar 

  • Shen W, Deng X (2016) Evaluation of the fourth-order tesseroid formula and new combination approach to precisely determine gravitational potential. Stud Geophys Geod 60:583–607

    Article  Google Scholar 

  • Sheng M, Shaw C, Vaníček P, Kingdon RW, Santos M, Foroughi I (2019) Formulation and validation of a global laterally varying topographical density model. Tectonophysics 762:45–60

    Article  Google Scholar 

  • Sjöberg LE (2004) The effect on the geoid of lateral topographic density variations. J Geodesy 78:34–39

    Google Scholar 

  • Smith DA (2000) The gravitational attraction of any polygonally shaped vertical prism with inclined top and bottom faces. J Geodesy 74:414–420

    Article  Google Scholar 

  • Soler SR, Pesce A, Gimenez ME, Uieda L (2019) Gravitational field calculation in spherical coordinates using variable densities in depth. Geophys J Int 218:2150–2164

    Article  Google Scholar 

  • Stroud AH, Secrest D (1966) Gaussian quadrature formulas. Prentice-Hall, New Jersey

    Google Scholar 

  • Tenzer R, Chen W, Rathnayake S, Pitoňák M (2021) The effect of anomalous global lateral topographic density on the geoid-to-quasigeoid separation. J Geodesy 95:12

    Article  Google Scholar 

  • Tenzer R, Vaníček P, Santos M, Featherstone WE, Kuhn M (2005) The rigorous determination of orthometric heights. J Geodesy 79:82–92

    Article  Google Scholar 

  • Tsoulis D (2000) A note on the gravitational field of the right rectangular prism. Bollettino di Geodesia e Scienze Affini LIX–1:21–35

  • Tsoulis D (2012) Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals. Geophysics 77:F1–F11

    Article  Google Scholar 

  • Tsoulis D, Novák P, Kadlec M (2009) Evaluation of precise terrain effects using high-resolution digital elevation models. J Geophys Res 114:B02404

    Google Scholar 

  • Tsoulis D, Wziontek H, Petrović S (2003) A bilinear approximation of the surface relief in terrain correction computations. J Geodesy 7:338–344

    Article  Google Scholar 

  • Tziavos IN, Sideris MG (2013) Topographic reductions in gravity and geoid modeling. In: Sansò F, Sideris MG (eds) Geoid Determination, Lecture Notes in Earth System Sciences, vol 110. Springer, Berlin

    Google Scholar 

  • Tziavos IN, Vergos GS, Grigoriadis VN (2010) Investigation of topographic reductions and aliasing effects on gravity and the geoid over Greece based on various digital terrain models. Surv Geophys 31:23–67

    Article  Google Scholar 

  • Uieda L, Barbosa VCF, Braitenberg C (2016) Tesseroids: forward-modeling gravitational field in spherical coordinates. Geophysics 81:F41–F48

    Article  Google Scholar 

  • Vaníček P, Christou NT (1993) Geoid and its geophysical interpretations. CRC Press, Boca Raton

    Google Scholar 

  • van Westrum D, Ahlgren K, Hirt C, Guillaume S (2021) A Geoid Slope Validation Survey (2017) in the rugged terrain of Colorado, USA. J Geodesy 95:9

    Article  Google Scholar 

  • Varga M, Pitoňák M, Novák P, Bašić T (2021) Contribution of GRAV-D airborne gravity to improvement of regional gravimetric geoid modeling in Colorado, USA. J Geodesy 95:53

    Article  Google Scholar 

  • Wang Y, Li X, Ahlgren K, Krcmaric J (2020) Colorado geoid modeling at the US National Geodetic Survey. J Geodesy 94:106

    Article  Google Scholar 

  • Wang Y, Saleh J, Li X, Roman DR (2012) The US Gravimetric Geoid of 2009 (USGG2009): model development and evaluation. J Geodesy 86:165–180

    Article  Google Scholar 

  • Wang Y, Sánchez L, Ågren J, Huang J, Forsberg R, Abd-Elmotaal HA, Ahlgren K, Barzaghi R, Bašić T, Carrion D, Claessens S, Erol B, Erol S, Filmer M, Grigoriadis VN, Isik MS, Jiang T, Koç Ö, Krcmaric J, Li X, Liu Q, Matsuo K, Natsiopoulos DA, Novák P, Pail R, Pitoňák M, Schmidt M, Varga M, Vergos GS, Véronneau M, Willberg M, Zingerle P (2021) Colorado geoid computation experiment: overview and summary. J Geodesy 95:127

    Article  Google Scholar 

  • Wild-Pfeiffer F (2008) A comparison of different mass elements for use in gravity gradiometry. J Geodesy 82:637–653

    Article  Google Scholar 

  • Yang M, Hirt C, Pail R (2020) TGF: a new MATLAB-based software for terrain-related gravity field calculations. Remote Sens 12:1063. https://doi.org/10.3390/rs12071063

    Article  Google Scholar 

  • Yang M, Hirt C, Tenzer R, Pail R (2018) Experiences with the use of mass-density maps in residual gravity forward modeling. Stud Geophys Geod 62:596–623

    Article  Google Scholar 

  • Zhong Y, Ren Z, Chen C, Chen H, Yang Z, Guo Z (2019) A new method for gravity modeling using tesseroids and 2D Gauss-Legendre quadrature rule. J Appl Geophys 164:53–64

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their constructive comments that helped to significantly improve the quality of this manuscript. Thanks also go to Dr. Jianliang Huang at the Natural Resources Canada and former NGS Chief Scientist Dr. Dennis Milbert for their helpful advices on the original version of this manuscript during the internal reviewing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The statistics of the RTM, TC, full topographic, and AH isostatic effects computed by the TC77/TC90, TCTESSV1a, TCTESSV1b, and TCTESSV2 methods considering the UNB_TopoDens model, as well as their differences with respect to the corresponding results computed based on the constant density model with the value of \(2.67\;{\text{g}}/{\text{cm}}^{3}\) are given in Tables 11, 12, 13, 14. Through observing the values in these four tables and Table 9, we can see that the computed topographic effects and the influences of lateral density variations are quite similar among all topographic gravity modeling methods.

Table 11 The same as for Table 9 but using the TC77/TC90 method
Table 12 The same as for Table 9 but using the TCTESSV1a method
Table 13 The same as for Table 9 but using the TCTESSV1b method
Table 14 The same as for Table 9 but using the TCTESSV2 method

The differences of the geoid models corresponding to TCTESSV2 and TCTESSV3, TCTESSV1a and TCTESSV3 are illustrated in Figs.

Fig. 15
figure 15

Differences of the geoid models. The used RTM effects are computed by TCTESSV2 and TCTESSV3 using the constant density model with the value of \(2.67\;{\text{g}}/{\text{cm}}^{3}\)

15 and

Fig. 16
figure 16

Differences of the geoid models. The used RTM effects are computed by TCTESSV1a and TCTESSV3 using the constant density model with the value of \(2.67\;{\text{g}}/{\text{cm}}^{3}\)

16, respectively. Because the RTM effects computed by TCTESSV2 and TCTESSV3 are almost the same, the resulting geoid differences are so small that can be neglected, with the mean value of zero, the SD of about 0.018 mm, the minimum and maximum values of about -1 mm and 1 mm (see Fig. 15). Because of the larger differences between the RTM effects computed by TCTESSV1a and TCTESSV3 than those between TCTESSV2 and TCTESSV3, slightly larger geoid differences having the mean value of about zero, the SD of about 0.39 mm, the minimum and maximum values of about -2.2 mm and 3.4 mm are observed (see Fig. 16). Through analyzing Figs. 9, 10, 15, and 16, we find that the geoid changes caused by using different topographic gravity modeling methods are at the millimeter level in the Colorado area.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, M., Li, X. Impacts of Using the Rigorous Topographic Gravity Modeling Method and Lateral Density Variation Model on Topographic Reductions and Geoid Modeling: A Case Study in Colorado, USA. Surv Geophys 43, 1497–1538 (2022). https://doi.org/10.1007/s10712-022-09708-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-022-09708-1

Keywords

Navigation