Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multiple exciton generation in tin–lead halide perovskite nanocrystals for photocurrent quantum efficiency enhancement

This article has been updated

Abstract

Multiple exciton generation (MEG), the generation of multiple electron–hole pairs from a single high-energy photon, can enhance the photoconversion efficiency in several technologies including photovoltaics, photon detection and solar-fuel production1,2,3,4,5,6. However, low efficiency, high photon-energy threshold and fast Auger recombination impede its practical application1,7. Here we achieve enhanced MEG with an efficiency of up to 87% and photon-energy threshold of two times the bandgap in highly stable, weakly confined formamidinium tin–lead iodide perovskite nanocrystals (FAPb1–xSnxI3 NCs; x ≤ 0.11). Importantly, an MEG-driven increment in the internal photocurrent quantum efficiency exceeding 100% with a low threshold is observed in such NC-sensitized photoconductors under ultraviolet-light illumination. The MEG enhancement mechanism is found to be mediated by the slower cooling and reduced trapping of hot carriers above the MEG threshold after the partial substitution of Pb by Sn. Our findings corroborate the potential importance of narrow-bandgap perovskite NCs for the development of optoelectronics that could benefit from MEG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Efficient MEG in FAPb1–xSnxI3 NCs.
Fig. 2: Enhanced photocurrent conversion efficiency by MEG in FAPb1–xSnxI3 NCs.
Fig. 3: Roles of hot-carrier cooling and trapping on MEG.
Fig. 4: Calculations of hot-carrier relaxation dynamics and defects formation.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are present in this Letter and its Supplementary Information. Additional data are available from the corresponding authors upon reasonable request.

Code availability

The codes used in this study are available from the corresponding authors upon reasonable request.

Change history

  • 31 May 2022

    In the version of this article initially published, the second affiliation omitted institutional divisions, which have now been restored to the HTML and PDF versions of the article.

References

  1. Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    Article  ADS  Google Scholar 

  2. Sambur, J. B., Novet, T. & Parkinson, B. A. Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010).

    Article  ADS  Google Scholar 

  3. Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324, 1542–1544 (2009).

    Article  ADS  Google Scholar 

  4. Gabor, N. M., Zhong, Z. H., Bosnick, K., Park, J. & McEuen, P. L. Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science 325, 1367–1371 (2009).

    Article  ADS  Google Scholar 

  5. Garin, M. et al. Black-silicon ultraviolet photodiodes achieve external quantum efficiency above 130%. Phys. Rev. Lett. 125, 117702 (2020).

    Article  ADS  Google Scholar 

  6. Yan, Y. et al. Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%. Nat. Energy 2, 17052 (2017).

    Article  ADS  Google Scholar 

  7. Beard, M. C. Multiple exciton generation in semiconductor quantum dots. J. Phys. Chem. Lett. 2, 1282–1288 (2011).

    Article  Google Scholar 

  8. Li, M. J. et al. Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals. Nat. Commun. 9, 4197 (2018).

    Article  ADS  Google Scholar 

  9. Midgett, A. G. et al. Size and composition dependent multiple exciton generation efficiency in PbS, PbSe, and PbSxSe1–x alloyed quantum dots. Nano Lett. 13, 3078–3085 (2013).

    Article  ADS  Google Scholar 

  10. Beard, M. C. et al. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Nano Lett. 10, 3019–3027 (2010).

    Article  ADS  Google Scholar 

  11. Gabor, N. M. Impact excitation and electron–hole multiplication in graphene and carbon nanotubes. Accounts Chem. Res. 46, 1348–1357 (2013).

    Article  Google Scholar 

  12. Trinh, M. T. et al. Direct generation of multiple excitons in adjacent silicon nanocrystals revealed by induced absorption. Nat. Photon. 6, 316–321 (2012).

    Article  ADS  Google Scholar 

  13. Winzer, T., Knorr, A. & Malic, E. Carrier multiplication in graphene. Nano Lett. 10, 4839–4843 (2010).

    Article  ADS  Google Scholar 

  14. Kim, J. H. et al. Carrier multiplication in van der Waals layered transition metal dichalcogenides. Nat. Commun. 10, 5488 (2019).

    Article  ADS  Google Scholar 

  15. Schaller, R. D. et al. Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions. Phys. Rev. Lett. 95, 196401 (2005).

  16. Righetto, M. et al. Hot carriers perspective on the nature of traps in perovskites. Nat. Commun. 11, 2712 (2020).

    Article  ADS  Google Scholar 

  17. Gao, J. B., Fidler, A. F. & Klimov, V. I. Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots. Nat. Commun. 6, 8185 (2015).

    Article  ADS  Google Scholar 

  18. Akkerman, Q. A., Raino, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    Article  ADS  Google Scholar 

  19. Li, M. J. et al. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. Nat. Commun. 8, 14350 (2017).

    Article  ADS  Google Scholar 

  20. Dai, L. et al. Slow carrier relaxation in tin-based perovskite nanocrystals. Nat. Photon. 15, 696–702 (2021).

  21. de Weerd, C. et al. Efficient carrier multiplication in CsPbl3 perovskite nanocrystals. Nat. Commun. 9, 4199 (2018).

    Article  ADS  Google Scholar 

  22. Cong, M. et al. Carrier multiplication and hot-carrier cooling dynamics in quantum-confined CsPbI3 perovskite nanocrystals. J. Phys. Chem. Lett. 11, 1921–1926 (2020).

    Article  Google Scholar 

  23. Manzi, A. et al. Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals. Nat. Commun. 9, 1518 (2018).

    Article  ADS  Google Scholar 

  24. Lee, J. W. et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015).

    Article  Google Scholar 

  25. van der Stam, W. et al. Highly emissive divalent-ion-doped colloidal CsPb1–xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 139, 4087–4097 (2017).

    Article  Google Scholar 

  26. Swarnkar, A., Mir, W. J. & Nag, A. Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X = Cl, Br, I) perovskites? ACS Energy Lett. 3, 286–289 (2018).

    Article  Google Scholar 

  27. Yan, D., Mo, Q., Zhao, S., Cai, W. & Zang, Z. Room temperature synthesis of Sn2+ doped highly luminescent CsPbBr3 quantum dots for high CRI white light-emitting diodes. Nanoscale 13, 9740–9746 (2021).

    Article  Google Scholar 

  28. Lu, C.-H., Biesold-McGee, G. V., Liu, Y., Kang, Z. & Lin, Z. Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chem. Soc. Rev. 49, 4953–5007 (2020).

    Article  Google Scholar 

  29. Kajal, S. et al. Unfolding the influence of metal doping on properties of CsPbI3 perovskite. Small Methods 4, 2000296 (2020).

    Article  Google Scholar 

  30. Tiwana, P., Docampo, P., Johnston, M. B., Snaith, H. J. & Herz, L. M. Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano 5, 5158–5166 (2011).

    Article  Google Scholar 

  31. Wu, X. X. et al. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 137, 2089–2096 (2015).

    Article  Google Scholar 

  32. Xue, J. et al. Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells. Joule 2, 1866–1878 (2018).

    Article  Google Scholar 

  33. Protesescu, L. et al. Dismantling the ‘red wall’ of colloidal perovskites: highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals. ACS Nano 11, 3119–3134 (2017).

    Article  Google Scholar 

  34. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  35. Li, W., Zhou, L. J., Prezhdo, O. V. & Akimov, A. V. Spin-orbit interactions greatly accelerate nonradiative dynamics in lead halide perovskites. ACS Energy Lett. 3, 2159–2166 (2018).

    Article  Google Scholar 

  36. Yin, J. et al. Tuning hot carrier cooling dynamics by dielectric confinement in two-dimensional hybrid perovskite crystals. ACS Nano 13, 12621–12629 (2019).

    Article  Google Scholar 

  37. Akimov, A. V. & Prezhdo, O. V. The PYXAID program for non-adiabatic molecular dynamics in condensed matter systems. J. Chem. Theory Comput. 9, 4959–4972 (2013).

    Article  Google Scholar 

  38. Akimov, A. V. & Prezhdo, O. V. Advanced capabilities of the PYXAID program: integration schemes, decoherence effects, multiexcitonic states, and field-matter interaction. J. Chem. Theory Comput. 10, 789–804 (2014).

    Article  Google Scholar 

  39. Tully, J. C. Molecular-dynamics with electronic-transitions. J. Chem. Phys. 93, 1061–1071 (1990).

    Article  ADS  Google Scholar 

  40. Liu, J. & Prezhdo, O. V. Chlorine doping reduces electron-hole recombination in lead iodide perovskites: time-domain ab initio analysis. J. Phys. Chem. Lett. 6, 4463–4469 (2015).

    Article  Google Scholar 

  41. Long, R., Liu, J. & Prezhdo, O. V. Unravelling the effects of grain boundary and chemical doping on electron-hole recombination in CH3NH3PbI3 perovskite by time-domain atomistic simulation. J. Am. Chem. Soc. 138, 3884–3890 (2016).

    Article  Google Scholar 

  42. Long, R., Fang, W. H. & Prezhdo, O. V. Moderate humidity delays electron-hole recombination in hybrid organic-inorganic perovskites: time-domain ab initio simulations rationalize experiments. J. Phys. Chem. Lett. 7, 3215–3222 (2016).

    Article  Google Scholar 

  43. Yin, J. et al. Modulation of broadband emissions in two-dimensional <100>-oriented Ruddlesden–Popper hybrid perovskites. ACS Energy Lett. 5, 2149–2155 (2020).

    Article  Google Scholar 

  44. Yin, J. et al. Manipulation of hot carrier cooling dynamics in two-dimensional Dion–Jacobson hybrid perovskites via Rashba band splitting. Nat. Commun. 12, 3995 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.L. acknowledges financial support from the Hong Kong Polytechnic University (grants 1-BE2Z, W188 and 1-ZVGH) and the Shenzhen Science, Technology and Innovation Commission (project no. R2021A064). J.Y., O.M.B. and O.F.M. acknowledge the Supercomputing Laboratory at KAUST for their efficient technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

M.L. conceived the idea and designed the experiments. Y.C. performed the sample and device fabrications, characterizations and optical/electrical measurements. M.L., Y.C. and Q.W. performed the TA and TRPL measurements. C.W., X.W. and H.R. assisted in sample fabrications and characterizations. J.Y., O.M.B. and O.F.M. performed the DFT and NAMD calculations. M.L., Y.C., J.Y. and O.F.M. drafted the manuscript. S.F.Y. assisted in interpreting the results and drafting the manuscript. All the authors discussed the results and commented on the manuscript at all stages.

Corresponding authors

Correspondence to Omar F. Mohammed or Mingjie Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Nathaniel Gabor, Bruce Parkinson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Table 1 and Figs. 1–27.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yin, J., Wei, Q. et al. Multiple exciton generation in tin–lead halide perovskite nanocrystals for photocurrent quantum efficiency enhancement. Nat. Photon. 16, 485–490 (2022). https://doi.org/10.1038/s41566-022-01006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01006-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing