Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High water content of arc magmas recorded in cumulates from subduction zone lower crust

Abstract

Magmatic volatiles (for example, water) are abundant in arc melts and exert fundamental controls on magma evolution, eruption dynamics and the formation of economic ore deposits. To constrain the H2O content of arc magmas, most studies have relied on measuring extrusive products and mineral-hosted melt inclusions. However, these methods have inherent limitations that obfuscate the full range of H2O in arc magmas. Here, we report secondary-ion mass spectrometry measurements of volatile (H2O, F, P, S, Cl) abundances in lower-crustal cumulate minerals from the Kohistan palaeo-arc (northwestern Pakistan) and determine H2O abundances of melts from which the cumulates crystallized. Pyroxenes retained magmatic H2O abundances and record damp (less than 1 wt% H2O) to hydrous (up to 10 wt% H2O) primitive melts. Subsequent crystal fractionation led to formation of super-hydrous melts with approximately 12–20 wt% H2O, predicted petrologically yet virtually absent from the melt-inclusion record. Porphyry copper deposits are probably a natural eventuality of fluid exsolution from super-hydrous melts, corroborating a growing body of evidence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinopyroxene H2O abundances plotted against major-element compositions.
Fig. 2: Kohistan equilibrium melt H2O abundances compared to arc magma literature.
Fig. 3: Chilas clinopyroxene H2O concentrations plotted against trace-element concentrations with various geochemical affinities.
Fig. 4: Crystallization models for Chilas and Jijal.
Fig. 5: Jijal crystallization model.

Similar content being viewed by others

Data availability

All data that support the findings of this study are presented herein or cited in the text and Methods. Arc melt-inclusion data for Fig. 5b were downloaded from the GEOROC Database (http://georoc.mpch-mainz.gwdg.de/georoc/) on 24 June 2020 as a precompiled file MELT_INCLUSIONS.csv and sorted. Geochemical data from this study available at PetDB, https://doi.org/10.26022/IEDA/112279.

Code availability

Code used in the generation of figures is available by request to the corresponding author.

References

  1. Wallace, P. J., Plank, T., Edmonds, M. & Hauri, E. H. in The Encyclopedia of Volcanoes (ed. Sigurdsson, H.) 163–183 (Elsevier, 2015).

  2. Mitchell, A. L., Gaetani, G. A., O’Leary, J. A. & Hauri, E. H. H2O solubility in basalt at upper mantle conditions. Contrib. Miner. Petrol. 172, 85 (2017).

    Article  Google Scholar 

  3. Dobson, P. F., Skogby, H. & Rossman, G. R. Water in boninite glass and coexisting orthopyroxene: concentration and partitioning. Contrib. Mineral. Petrol. 118, 414–419 (1995).

    Article  Google Scholar 

  4. Sisson, T. & Layne, G. H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet Sci. Lett. 117, 619–635 (1993).

    Article  Google Scholar 

  5. Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H. & Wallace, P. J. Why do mafic arc magmas contain 4 wt% water on average? Earth Planet Sci. Lett. 364, 168–179 (2013).

    Article  Google Scholar 

  6. Gaetani, G. A., O’Leary, J. A., Shimizu, N., Bucholz, C. E. & Newville, M. Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 40, 915–918 (2012).

    Article  Google Scholar 

  7. Portnyagin, M., Almeev, R., Matveev, S. & Holtz, F. Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth Planet Sci. Lett. 272, 541–552 (2008).

    Article  Google Scholar 

  8. Bucholz, C. E., Gaetani, G. A., Behn, M. D. & Shimizu, N. Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions. Earth Planet. Sci. Lett. 374, 145–155 (2013).

    Article  Google Scholar 

  9. Annen, C., Blundy, J. & Sparks, R. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).

    Article  Google Scholar 

  10. Goltz, A. E., Krawczynski, M. J., Gavrilenko, M., Gorbach, N. V. & Ruprecht, P. Evidence for superhydrous primitive arc magmas from mafic enclaves at Shiveluch volcano, Kamchatka. Contrib. Mineral. Petrol. 175, 115 (2020).

    Article  Google Scholar 

  11. Grove, T. L. et al. Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contrib. Mineral. Petrol. 148, 542–565 (2005).

    Article  Google Scholar 

  12. Krawczynski, M. J., Grove, T. L. & Behrens, H. Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity. Contrib. Mineral. Petrol. 164, 317–339 (2012).

    Article  Google Scholar 

  13. Zellmer, G. F. et al. Petrogenesis of antecryst-bearing arc basalts from the trans-Mexican volcanic belt: insights into along-arc variations in magma-mush ponding depths, H2O contents, and surface heat flux. Am. Mineral. 101, 2405–2422 (2016).

    Article  Google Scholar 

  14. Prouteau, G. & Scaillet, B. Experimental constraints on the origin of the 1991 Pinatubo dacite. J. Petrol. 44, 2203–2241 (2003).

    Article  Google Scholar 

  15. Carmichael, I. S. The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99° W) Mexico. Contrib. Mineral. Petrol. 143, 641–663 (2002).

    Article  Google Scholar 

  16. Lu, Y.-J., Loucks, R. R., Fiorentini, M. L., Yang, Z.-M. & Hou, Z.-Q. Fluid flux melting generated postcollisional high Sr/Y copper ore–forming water-rich magmas in Tibet. Geology 43, 583–586 (2015).

    Article  Google Scholar 

  17. Laumonier, M., Gaillard, F., Muir, D., Blundy, J. & Unsworth, M. Giant magmatic water reservoirs at mid-crustal depth inferred from electrical conductivity and the growth of the continental crust. Earth Planet. Sci. Lett. 457, 173–180 (2017).

    Article  Google Scholar 

  18. Tattitch, B., Chelle-Michou, C., Blundy, J. & Loucks, R. R. Chemical feedbacks during magma degassing control chlorine partitioning and metal extraction in volcanic arcs. Nat. Commun. 12, 1774 (2021).

    Article  Google Scholar 

  19. O’Leary, J. A., Gaetani, G. A. & Hauri, E. H. The effect of tetrahedral Al3+ on the partitioning of water between clinopyroxene and silicate melt. Earth Planet. Sci. Lett. 297, 111–120 (2010).

    Article  Google Scholar 

  20. Tahirkheli, R. A. K. & Jan, M. Q. Geology of Kohistan, Karakorum Himalaya, northern Pakistan. Geol. Bull. Univ. Peshawar 11, 1–30 (1979).

    Google Scholar 

  21. Jagoutz, O. & Schmidt, M. W. The formation and bulk composition of modern juvenile continental crust: the Kohistan arc. Chem. Geol. 298, 79–96 (2012).

    Article  Google Scholar 

  22. Jagoutz, O. et al. Petrology and mineral chemistry of lower crustal intrusions: the Chilas Complex, Kohistan (NW Pakistan). J. Petrol. 48, 1895–1953 (2007).

    Article  Google Scholar 

  23. Loucks, R. R. Restoration of the elemental and stable-isotopic compositions of diffusionally altered minerals in slowly cooled rocks. Contrib. Mineral. Petrol. 124, 346–358 (1996).

    Article  Google Scholar 

  24. Müntener, O. & Ulmer, P. Arc crust formation and differentiation constrained by experimental petrology. Am. J. Sci. 318, 64–89 (2018).

    Article  Google Scholar 

  25. Ulmer, P., Kaegi, R. & Müntener, O. Experimentally derived intermediate to silica-rich arc magmas by fractional and equilibrium crystallization at 1·0 GPa: an evaluation of phase relationships, compositions, liquid lines of descent and oxygen fugacity. J. Petrol. 59, 11–58 (2018).

    Article  Google Scholar 

  26. Jagoutz, O., Muntener, O., Schmidt, M. W. & Burg, J. P. The roles of flux- and decompression melting and their respective fractionation lines for continental crust formation: evidence from the Kohistan arc. Earth Planet Sci. Lett. 303, 25–36 (2011).

    Article  Google Scholar 

  27. Schaltegger, U., Zeilinger, G., Frank, M. & Burg, J. P. Multiple mantle sources during island arc magmatism: U–Pb and Hf isotopic evidence from the Kohistan arc complex, Pakistan. Terra Nova 14, 461–468 (2002).

    Article  Google Scholar 

  28. Bouilhol, P., Jagoutz, O., Hanchar, J. M. & Dudas, F. O. Dating the India–Eurasia collision through arc magmatic records. Earth Planet. Sci. Lett. 366, 163–175 (2013).

    Article  Google Scholar 

  29. Burg, J. P., Jagoutz, O., Dawood, H. & Hussain, S. S. Precollision tilt of crustal blocks in rifted island arcs: structural evidence from the Kohistan Arc. Tectonics 25, TC5005 (2006).

    Article  Google Scholar 

  30. Demouchy, S., Jacobsen, S. D., Gaillard, F. & Stern, C. R. Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology 34, 429–432 (2006).

    Article  Google Scholar 

  31. Le Roux, V. et al. Postmelting hydrogen enrichment in the oceanic lithosphere. Sci. Adv. 7, eabf6071 (2021).

    Article  Google Scholar 

  32. Peslier, A. H. & Luhr, J. F. Hydrogen loss from olivines in mantle xenoliths from Simcoe (USA) and Mexico: mafic alkalic magma ascent rates and water budget of the sub-continental lithosphere. Earth Planet. Sci. Lett. 242, 302–319 (2006).

    Article  Google Scholar 

  33. Xu, Y. et al. Reconciling the discrepancy between the dehydration rates in mantle olivine and pyroxene during xenolith emplacement. Geochim. Cosmochim. Acta 267, 179–195 (2019).

    Article  Google Scholar 

  34. Ferriss, E., Plank, T. & Walker, D. Site-specific hydrogen diffusion rates during clinopyroxene dehydration. Contrib. Mineral. Petrol. 171, 55 (2016).

    Article  Google Scholar 

  35. Schaffer, L. A. et al. Effects of melting, subduction-related metasomatism, and sub-solidus equilibration on the distribution of water contents in the mantle beneath the Rio Grande Rift. Geochim. Cosmochim. Acta 266, 351–381 (2019).

    Article  Google Scholar 

  36. Hauri, E. H., Gaetani, G. A. & Green, T. H. Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet Sci. Lett. 248, 715–734 (2006).

    Article  Google Scholar 

  37. Berndt, J. et al. A combined rapid-quench and H2-membrane setup for internally heated pressure vessels: description and application for water solubility in basaltic melts. Am. Mineral. 87, 1717–1726 (2002).

    Article  Google Scholar 

  38. Hamilton, D., Burnham, C. W. & Osborn, E. The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas. J. Petrol. 5, 21–39 (1964).

    Article  Google Scholar 

  39. Jagoutz, O., Müntener, O., Burg, J.-P., Ulmer, P. & Jagoutz, E. Lower continental crust formation through focused flow in km-scale melt conduits: the zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan). Earth Planet. Sci. Lett. 242, 320–342 (2006).

    Article  Google Scholar 

  40. Jagoutz, O. E. Construction of the granitoid crust of an island arc. Part II: a quantitative petrogenetic model. Contrib. Mineral. Petrol. 160, 359–381 (2010).

    Article  Google Scholar 

  41. Newman, S. & Lowenstern, J. B. VolatileCalc: a silicate melt–H2O–CO2 solution model written in Visual Basic for Excel. Comput. Geosci. 28, 597–604 (2002).

    Article  Google Scholar 

  42. Alletti, M. et al. Chlorine partitioning between a basaltic melt and H2O–CO2 fluids at Mount Etna. Chem. Geol. 263, 37–50 (2009).

    Article  Google Scholar 

  43. Lee, C.-T. A. & Tang, M. How to make porphyry copper deposits. Earth Planet. Sci. Lett. 529, 115868 (2020).

    Article  Google Scholar 

  44. Hedenquist, J. W., Arribas, A. & Reynolds, T. J. Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Econ. Geol. 93, 373–404 (1998).

    Article  Google Scholar 

  45. Rezeau, H. & Jagoutz, O. The importance of H2O in arc magmas for the formation of porphyry Cu deposits. Ore Geol. Rev. 126, 103744 (2020).

    Article  Google Scholar 

  46. Klemm, L. M., Pettke, T. & Heinrich, C. A. Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Miner. Depos. 43, 533 (2008).

    Article  Google Scholar 

  47. Loucks, R. R. Deep entrapment of buoyant magmas by orogenic tectonic stress: its role in producing continental crust, adakites, and porphyry copper deposits. Earth Sci. Rev. 220, 103744 (2021).

    Article  Google Scholar 

  48. Kodaira, S. et al. Seismological evidence for variable growth of crust along the Izu intraoceanic arc. J. Geophys. Res. Solid Earth 112, B05104 (2007).

    Article  Google Scholar 

  49. Kodaira, S. et al. New seismological constraints on growth of continental crust in the Izu-Bonin intra-oceanic arc. Geology 35, 1031–1034 (2007).

    Article  Google Scholar 

  50. Behn, M. D. & Kelemen, P. B. Stability of arc lower crust: insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs. J. Geophys. Res. Solid Earth 111, B11207 (2006).

    Article  Google Scholar 

  51. O’Reilly, S. Y. & Griffin, W. Moho vs crust–mantle boundary: evolution of an idea. Tectonophysics 609, 535–546 (2013).

    Article  Google Scholar 

  52. Müntener, O. & Ulmer, P. Experimentally derived high‐pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of lower arc crust. Geophys. Res. Lett. 33, L21308 (2006).

    Article  Google Scholar 

  53. Portnyagin, M., Hoernle, K., Plechov, P., Mironov, N. & Khubunaya, S. Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci. Lett. 255, 53–69 (2007).

    Article  Google Scholar 

  54. Rose-Koga, E. F. et al. Volatile (F and Cl) concentrations in Iwate olivine-hosted melt inclusions indicating low-temperature subduction. Earth Planets Space 66, 81 (2014).

    Article  Google Scholar 

  55. Rose-Koga, E. F. et al. Mantle source heterogeneity for South Tyrrhenian magmas revealed by Pb isotopes and halogen contents of olivine-hosted melt inclusions. Chem. Geol. 334, 266–279 (2012).

    Article  Google Scholar 

  56. Sadofsky, S. J., Portnyagin, M., Hoernle, K. & van den Bogaard, P. Subduction cycling of volatiles and trace elements through the Central American volcanic arc: evidence from melt inclusions. Contrib. Mineral. Petrol. 155, 433–456 (2008).

    Article  Google Scholar 

  57. GEOROC Compilation: Melt Inclusions. Goettingen Research Online 1 (DIGIS, accessed 24 June 2020); http://georoc.mpch-mainz.gwdg.de/georoc/

  58. Sun, C. & Liang, Y. A REE-in-garnet-clinopyroxene thermobarometer for eclogites, granulites and garnet peridotites. Chem. Geol. 393–394, 79–92 (2015).

    Article  Google Scholar 

  59. Urann, B. M., Le Roux, V., John, T., Beaudoin, G. M. & Barnes, J. D. The distribution and abundance of halogens in eclogites: an in situ SIMS perspective of the Raspas Complex (Ecuador). Am. Mineral. 105, 307–318 (2020).

    Article  Google Scholar 

  60. Kumamoto, K. M., Warren, J. M. & Hauri, E. H. New SIMS reference materials for measuring water in upper mantle minerals. Am. Mineral. 102, 537–547 (2017).

    Article  Google Scholar 

  61. Abers, G. A. & Hacker, B. R. A MATLAB toolbox and Excel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature. Geochem. Geophys. Geosyst. 17, 616–624 (2016).

    Article  Google Scholar 

  62. Pearce, N. J. et al. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Newsl. 21, 115–144 (1997).

    Article  Google Scholar 

  63. Jackson, S. E. LAMTRACE data reduction software for LA-ICP-MS. Mineral. Assoc. Can. Short Course Ser. 40, 305–307 (2008).

    Google Scholar 

  64. Lee, C.-T. A. Laser Ablation ICP-MS: Data Reduction (2006); www.cintylee.org/s/LASERABLATIONICP.pdf

  65. Urann, B. et al. Fluorine and chlorine in mantle minerals and the halogen budget of the Earth’s mantle. Contrib. Mineral. Petrol. 172, 51 (2017).

    Article  Google Scholar 

  66. Joachim, B. et al. Effect of water on the fluorine and chlorine partitioning behavior between olivine and silicate melt. Contrib. Mineral. Petrol. 172, 15 (2017).

    Article  Google Scholar 

  67. Dalou, C., Koga, K. T., Le Voyer, M. & Shimizu, N. Contrasting partition behavior of F and Cl during hydrous mantle melting: implications for Cl/F signature in arc magmas. Prog. Earth Planet. Sci. 1, 26 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank B. Monteleone and N. Chatterjee for their technical expertise on the Cameca 1280 at the Northeast National Ion Microprobe Facility at WHOI and electron microprobe at MIT, respectively. We thank S. Parman, W. J. Collins and R. Loucks for their comments on previous versions of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

B.M.U. conceived the study. B.M.U. and V.L.R. collected and interpreted the data and wrote the manuscript. O.J. and O.M. provided samples, data and geochemical models. B.M.U., V.L.R., M.D.B. and E.J.C. acquired financial support. All authors contributed to editing the manuscript. Funding for this study was supported by the Woods Hole Oceanographic Institution Ocean Venture Fund to B.M.U., NSF awards EAR-P&G #1839128 and EAR-P&G/Geophysics #1855302 to V.L.R. and EAR-18-55430 to M.D.B. and E.J.C. V.L.R. also acknowledges the support from the Visiting Scholar at SCIENCE programme at the University of Copenhagen, Denmark. B.M.U. also acknowledges continued support from NSF OCE Post-doctoral Research Fellow grant (#2126559).

Corresponding author

Correspondence to B. M. Urann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Stephen Parman, William Collins and Robert Loucks for their contribution to the peer review of this work. Primary Handling Editor: Rebecca Neely, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Sample descriptions, analytical techniques, partition coefficient calculations, crystal fractionation model details, crystallization correction, inter-mineral partitioning, additional figures and analytical calibration curves.

Supplementary Table 1

Sample locations, pressure and temperature estimates.

Supplementary Table 2

Volatile abundances by phase (SIMS).

Supplementary Table 3

Chilas modal abundances.

Supplementary Table 4

Volatile- and major-element analyses of individual measurements.

Supplementary Table 5

Clinopyroxene and garnet trace-element abundances.

Supplementary Table 6

Equilibrium crystallization model (Chilas).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urann, B.M., Le Roux, V., Jagoutz, O. et al. High water content of arc magmas recorded in cumulates from subduction zone lower crust. Nat. Geosci. 15, 501–508 (2022). https://doi.org/10.1038/s41561-022-00947-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00947-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing