Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism-based ligand design for copper-catalysed enantioconvergent C(sp3)–C(sp) cross-coupling of tertiary electrophiles with alkynes

Abstract

In contrast with the well-established enantioconvergent radical C(sp3)–C cross-coupling of racemic secondary alkyl electrophiles, the corresponding coupling of tertiary electrophiles to forge all-carbon quaternary stereocentres remains underexplored. The major challenge arises from the steric hindrance and the difficult enantio-differentiation of three distinct carbon substituents of prochiral tertiary radicals. Here we demonstrate a general copper-catalysed enantioconvergent C(sp3)–C(sp) cross-coupling of diverse racemic tertiary alkyl halides with terminal alkynes (87 examples). Key to the success is the rational design of chiral anionic N,N,N-ligands tailor-made for the computationally predicted outer-sphere radical group transfer pathway. This protocol provides a practical platform for the construction of chiral C(sp3)–C(sp/sp2/sp3) bonds, allowing for expedient access to an array of synthetically challenging quaternary carbon building blocks of interest in organic synthesis and related areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Motivation and design of Cu-catalysed enantioconvergent cross-coupling of racemic tertiary alkyl halides with terminal alkynes.
Fig. 2: Synthetic utility and mechanistic discussion.
Fig. 3: Model DFT study on the operative catalytic cycle.
Fig. 4: DFT calculations on enantioselectivity control.

Similar content being viewed by others

Data availability

Data relating to the materials and methods, optimization studies, experimental procedures, mechanistic studies, DFT calculations, HPLC spectra, NMR spectra and mass spectrometry are available in the Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition nos. CCDC 2074298 (44), 2074300 (55), 2074301 (79) and 2074302 (C1). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).

    Article  CAS  Google Scholar 

  2. de Meijere, A., Bräse, S. & Oestreich, M. (eds) Metal-Catalyzed Cross-Coupling Reactions and More (Wiley, 2014).

  3. Biffis, A., Centomo, P., Del Zotto, A. & Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: a critical review. Chem. Rev. 118, 2249–2295 (2018).

    Article  CAS  Google Scholar 

  4. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl-alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  Google Scholar 

  5. Fu, G. C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes. ACS Cent. Sci. 3, 692–700 (2017).

    Article  CAS  Google Scholar 

  6. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C-C bonds. Chem. Rev. 115, 9587–9652 (2015).

    Article  CAS  Google Scholar 

  7. Bullock, R. M. et al. Using nature’s blueprint to expand catalysis with Earth-abundant metals. Science 369, eabc3183 (2020).

    Article  CAS  Google Scholar 

  8. Wang, Z., Yin, H. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).

    Article  CAS  Google Scholar 

  9. Wang, Z., Yang, Z.-P. & Fu, G. C. Quaternary stereocentres via catalytic enantioconvergent nucleophilic substitution reactions of tertiary alkyl halides. Nat. Chem. 13, 236–242 (2021).

    Article  CAS  Google Scholar 

  10. Quasdorf, K. W. & Overman, L. E. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature 516, 181–191 (2014).

    Article  CAS  Google Scholar 

  11. Liu, Y., Han, S.-J., Liu, W.-B. & Stoltz, B. M. Catalytic enantioselective construction of quaternary stereocenters: assembly of key building blocks for the synthesis of biologically active molecules. Acc. Chem. Res. 48, 740–751 (2015).

    Article  CAS  Google Scholar 

  12. Wu, L., Yang, G. & Zhang, W. Ni-catalyzed enantioconvergent coupling of epoxides with alkenylboronic acids: construction of oxindoles bearing quaternary carbons. CCS Chem. 2, 623–631 (2020).

    Article  CAS  Google Scholar 

  13. Trost, B. M. & Jiang, C. Atom economic asymmetric creation of quaternary carbon: regio- and enantioselective reactions of a vinylepoxide with a carbon nucleophile. J. Am. Chem. Soc. 123, 12907–12908 (2001).

    Article  CAS  Google Scholar 

  14. Zhang, P., Le, H., Kyne, R. E. & Morken, J. P. Enantioselective construction of all-carbon quaternary centers by branch-selective Pd-catalyzed allyl–allyl cross-coupling. J. Am. Chem. Soc. 133, 9716–9719 (2011).

    Article  CAS  Google Scholar 

  15. Ma, S., Han, X., Krishnan, S., Virgil, S. C. & Stoltz, B. M. Catalytic enantioselective stereoablative alkylation of 3-halooxindoles: facile access to oxindoles with C3 all-carbon quaternary stereocenters. Angew. Chem. Int. Ed. 48, 8037–8041 (2009).

    Article  CAS  Google Scholar 

  16. Tsuchida, K., Senda, Y., Nakajima, K. & Nishibayashi, Y. Construction of chiral tri- and tetra-arylmethanes bearing quaternary carbon centers: copper-catalyzed enantioselective propargylation of indoles with propargylic esters. Angew. Chem. Int. Ed. 55, 9728–9732 (2016).

    Article  CAS  Google Scholar 

  17. Zhao, W., Wang, Z., Chu, B. & Sun, J. Enantioselective formation of all-carbon quaternary stereocenters from indoles and tertiary alcohols bearing a directing group. Angew. Chem. Int. Ed. 54, 1910–1913 (2015).

    Article  CAS  Google Scholar 

  18. Li, X. et al. Catalytic enantioselective synthesis of chiral tetraarylmethanes. Nat. Catal. 3, 1010–1019 (2020).

    Article  CAS  Google Scholar 

  19. Wendlandt, A. E., Vangal, P. & Jacobsen, E. N. Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction. Nature 556, 447–451 (2018).

    Article  CAS  Google Scholar 

  20. Zhang, X. et al. An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction. Science 363, 400–404 (2019).

    Article  CAS  Google Scholar 

  21. Li, J. et al. Formal enantioconvergent substitution of alkyl halides via catalytic asymmetric photoredox radical coupling. Nat. Commun. 9, 2445 (2018).

    Article  Google Scholar 

  22. Murakata, M., Jono, T., Mizuno, Y. & Hoshino, O. Construction of chiral quaternary carbon centers by catalytic enantioselective radical-mediated allylation of α-iodolactones using allyltributyltin in the presence of a chiral Lewis acid. J. Am. Chem. Soc. 119, 11713–11714 (1997).

    Article  CAS  Google Scholar 

  23. Evano, G. & Blanchard, N. (eds) Copper-Mediated Cross-Coupling Reactions (Wiley, 2014).

  24. Chemler, S. R. Copper’s contribution to amination catalysis. Science 341, 624–626 (2013).

    Article  CAS  Google Scholar 

  25. Gu, Q.-S., Li, Z.-L. & Liu, X.-Y. Copper(I)-catalyzed asymmetric reactions involving radicals. Acc. Chem. Res. 53, 170–181 (2020).

    Article  CAS  Google Scholar 

  26. Dong, X.-Y. et al. A general asymmetric copper-catalysed Sonogashira C(sp3)–C(sp) coupling. Nat. Chem. 11, 1158–1166 (2019).

    Article  CAS  Google Scholar 

  27. Jiang, S.-P. et al. Copper-catalyzed enantioconvergent radical Suzuki-Miyaura C(sp3)-C(sp2) cross-coupling. J. Am. Chem. Soc. 142, 19652–19659 (2020).

    Article  CAS  Google Scholar 

  28. Su, X.-L. et al. Copper-catalyzed enantioconvergent cross-coupling of racemic alkyl bromides with azole C(sp2)–H bonds. Angew. Chem. Int. Ed. 60, 380–384 (2021).

    Article  CAS  Google Scholar 

  29. Dong, X.-Y. et al. Copper-catalyzed asymmetric radical 1,2-carboalkynylation of alkenes with alkyl halides and terminal alkynes. J. Am. Chem. Soc. 142, 9501–9509 (2020).

    Article  CAS  Google Scholar 

  30. Proctor, R. S. J., Colgan, A. C. & Phipps, R. J. Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. Nat. Chem. 12, 990–1004 (2020).

    Article  Google Scholar 

  31. Sladojevich, F., Trabocchi, A., Guarna, A. & Dixon, D. J. A new family of cinchona-derived amino phosphine precatalysts: application to the highly enantio- and diastereoselective silver-catalyzed isocyanoacetate aldol reaction. J. Am. Chem. Soc. 133, 1710–1713 (2011).

    Article  CAS  Google Scholar 

  32. Hayashi, M., Shiomi, N., Funahashi, Y. & Nakamura, S. Cinchona alkaloid amides/dialkylzinc catalyzed enantioselective desymmetrization of aziridines with phosphites. J. Am. Chem. Soc. 134, 19366–19369 (2012).

    Article  CAS  Google Scholar 

  33. Zhang, F.-H., Zhang, F.-J., Li, M.-L., Xie, J.-H. & Zhou, Q.-L. Enantioselective hydrogenation of dialkyl ketones. Nat. Catal. 3, 621–627 (2020).

    Article  CAS  Google Scholar 

  34. Banik, B. K. (ed.) β-Lactams: Unique Structures of Distinction for Novel Molecules (Springer, 2013).

  35. Decuyper, L. et al. Antibacterial and β-lactamase inhibitory activity of monocyclic β-lactams. Med. Res. Rev. 38, 426–503 (2018).

    Article  CAS  Google Scholar 

  36. Galletti, P. & Giacomini, D. Monocyclic β-lactams: new structures for new biological activities. Curr. Med. Chem. 18, 4265–4283 (2011).

    Article  CAS  Google Scholar 

  37. Pitts, C. R. & Lectka, T. Chemical synthesis of β-lactams: asymmetric catalysis and other recent advances. Chem. Rev. 114, 7930–7953 (2014).

    Article  CAS  Google Scholar 

  38. Ojima, I., Zuniga, E. S. & Seitz, J. D. in β-Lactams: Unique Structures of Distinction for Novel Molecules (ed. Banik, B. K.) 1–64 (Springer, 2013).

  39. Wu, L., Wang, F., Chen, P. & Liu, G. Enantioselective construction of quaternary all-carbon centers via copper-catalyzed arylation of tertiary carbon-centered radicals. J. Am. Chem. Soc. 141, 1887–1892 (2019).

    Article  CAS  Google Scholar 

  40. Kainz, Q. M. et al. Asymmetric copper-catalyzed C-N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    Article  CAS  Google Scholar 

  41. Lin, C. Y., Coote, M. L., Gennaro, A. & Matyjaszewski, K. Ab initio evaluation of the thermodynamic and electrochemical properties of alkyl halides and radicals and their mechanistic implications for atom transfer radical polymerization. J. Am. Chem. Soc. 130, 12762–12774 (2008).

    Article  CAS  Google Scholar 

  42. Isse, A. A., Bortolamei, N., De Paoli, P. & Gennaro, A. On the mechanism of activation of copper-catalyzed atom transfer radical polymerization. Electrochim. Acta 110, 655–662 (2013).

    Article  CAS  Google Scholar 

  43. Fang, C. et al. Mechanistically guided predictive models for ligand and initiator effects in copper-catalyzed atom transfer radical polymerization (Cu-ATRP). J. Am. Chem. Soc. 141, 7486–7497 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (grants nos. 21831002 and 22025103 to X.-Y.L., 21901106 to F.-L.W., 22001109 to Q.-S.G. and 21702182, 21873081 and 22122109 to X.H.), Guangdong Innovative Program (no. 2019BT02Y335 to X.-Y.L.), Guangdong Provincial Key Laboratory of Catalysis (no. 2020B121201002 to X.-Y.L.), Shenzhen Special Funds (no. JCYJ20200109141001789 to X.-Y.L.), SUSTech Special Fund for the Construction of High-Level Universities (no. G02216303 to X.-Y.L.), Fundamental Research Funds for the Central Universities (no. 2020XZZX002-02 to X.H.), the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (no. SN-ZJU-SIAS-006 to X.H.), the State Key Laboratory of Clean Energy Utilization (no. ZJUCEU2020007 to X.H.) and Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province (no. PSFM2021-01 to X.H.) for financial support. We appreciate the assistance of SUSTech Core Research Facilities with compound characterization. We also appreciate the support of the Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University. Calculations were performed on the high-performance computing system at the Department of Chemistry, Zhejiang University.

Author information

Authors and Affiliations

Authors

Contributions

X.-Y.L. and Q.-S.G. conceived and supervised the project. F.-L.W., C.-J.Y., N.-Y.Y., X.-Y.D., R.-Q.J., X.-Y.C., Z.-L.L., D.-L.Y. and Y.-S.Z. designed and performed the experiments and analysed the data. X.H. designed the DFT calculations. J.-R.L. and G.-X.X. performed the DFT calculations. X.-Y.L., X.H. and Q.-S.G. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Qiang-Shuai Gu, Xin Hong or Xin-Yuan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31 and Tables 1–7, experimental procedures, synthetic procedures, characterization data, density functional theory (DFT) calculations and mechanistic discussion.

Supplementary Data 1

Crystallographic data for compound 44; CCDC reference 2074298.

Supplementary Data 2

Crystallographic data for compound 55; CCDC reference 2074300.

Supplementary Data 3

Crystallographic data for compound 79; CCDC reference 2074301.

Supplementary Data 4

Crystallographic data for compound C1; CCDC reference 2074302.

Supplementary Data 5

Tables of energies and coordinates in XYZ format.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, FL., Yang, CJ., Liu, JR. et al. Mechanism-based ligand design for copper-catalysed enantioconvergent C(sp3)–C(sp) cross-coupling of tertiary electrophiles with alkynes. Nat. Chem. 14, 949–957 (2022). https://doi.org/10.1038/s41557-022-00954-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00954-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing