Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Insights of Lipid Vesicular and Particulate Carrier Mediated Approach for Acne Management

Author(s): Shruti Dudhat, Prabha Singh and Prachi Pimple*

Volume 20, Issue 1, 2023

Published on: 01 August, 2022

Page: [57 - 74] Pages: 18

DOI: 10.2174/1567201819666220524154448

Price: $65

Abstract

Acne vulgaris is a universal multifactorial human skin condition of the pilosebaceous units. Although acne majorly prevails in teenagers, it is neither restricted to age group nor gender. Multifarious causative factors like Propionibacterium acnes, dysregulated sebum secretion, and androgens play an integral role in the manifestation of acne. Though abundant new chemical entities are convenient for acne therapy, none can treat this condition without compromising patient compliance. Furthermore, accessible treatment prevents the ailment and alleviates signs and symptoms with no absolute cure. So presently, despite the variety of topical formulations, the current market demands an ideal remedy to fulfill the unmet need for acne management. Extensive research has proved the upper hand of novel carrier systems over conventional formulations by substantially improving efficacy and eliminating unpleasant side effects. Lipid-based vesicular and particulate systems are promising prospects due to their closeness to the intrinsic structure of the skin, which offer delivery of the actives in a more desirable approach. This review underlines the practicability and superiority of liposomes, niosomes, transfersomes, ethosomes, cubosomes, solid lipid nanoparticles, and nanostructured lipid carriers over conventional therapies for acne. The review also highlights acne product market survey and available conventional as well as novel formulations portraying their scope in the market. In a nutshell, lipid-based vesicular and particulate systems prevail as a propitious modality for treating acne vulgaris as they conduce better penetrability, localized action, and reduce adverse effects. These systems have the ability to open a window of opportunities for effective acne alleviation.

Keywords: Acne vulgaris, topical treatment, vesicular system, liposomes, lipid particulate system, solid lipid nanoparticles, nanostructured lipid carriers.

Graphical Abstract
[1]
Garg, T. Current nanotechnological approaches for an effective delivery of bio-active drug molecules in the treatment of acne. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 98-105.
[http://dx.doi.org/10.3109/21691401.2014.916715] [PMID: 24844191]
[2]
Perkins, A.C.; Cheng, C.E.; Hillebrand, G.G.; Miyamoto, K.; Kimball, A.B. Comparison of the epidemiology of acne vulgaris among Caucasian, Asian, Continental Indian and African American women. J. Eur. Acad. Dermatol. Venereol., 2011, 25(9), 1054-1060.
[http://dx.doi.org/10.1111/j.1468-3083.2010.03919.x] [PMID: 21108671]
[3]
Kanlayavattanakul, M.; Lourith, N. Therapeutic agents and herbs in topical application for acne treatment. Int. J. Cosmet. Sci., 2011, 33(4), 289-297.
[http://dx.doi.org/10.1111/j.1468-2494.2011.00647.x] [PMID: 21401650]
[4]
Clark, A.K.; Saric, S.; Sivamani, R.K. Acne scars: How do we grade them? Am. J. Clin. Dermatol., 2018, 19(2), 139-144.
[http://dx.doi.org/10.1007/s40257-017-0321-x] [PMID: 28891036]
[5]
Brajac, I.; Bilić-Zulle, L.; Tkalcić, M.; Lončarek, K.; Gruber, F. Acne vulgaris: Myths and misconceptions among patients and family physicians. Patient Educ. Couns., 2004, 54(1), 21-25.
[http://dx.doi.org/10.1016/S0738-3991(03)00168-X] [PMID: 15210256]
[6]
Plewig, G.; Melnik, B.; Chen, W. Plewig and Kligman’s Acne and Rosacea; Plewig Kligman’s Acne Rosacea, 2019.
[http://dx.doi.org/10.1007/978-3-319-49274-2]
[7]
Tan, A.U.; Schlosser, B.J.; Paller, A.S. A review of diagnosis and treatment of acne in adult female patients. Int. J. Womens Dermatol., 2017, 4(2), 56-71.
[http://dx.doi.org/10.1016/j.ijwd.2017.10.006] [PMID: 29872679]
[8]
Acne Drugs Market Size & Share | Industry Trends Report, 2018-2025. Available from: https://www.grandviewresearch.com/industry-analysis/acne-drugs-market (accessed Nov. 17, 2020).
[9]
Anti-acne Cosmetics Market Size & Share Report, , 2021-2028. Available from: https://www.grandviewresearch.com/industry-analysis/anti-acne-cosmetics-market
[10]
Zouboulis, C.C. Sebaceous gland receptors. Dermatoendocrinol, 2009, 1(2), 77-80.
[http://dx.doi.org/10.4161/derm.1.2.7804] [PMID: 20224688]
[11]
Bíró, T.; Tóth, B.I.; Haskó, G.; Paus, R.; Pacher, P. The endocannabinoid system of the skin in health and disease: Novel perspectives and therapeutic opportunities. Trends Pharmacol. Sci., 2009, 30(8), 411-420.
[http://dx.doi.org/10.1016/j.tips.2009.05.004] [PMID: 19608284]
[12]
Dréno, B. What is new in the pathophysiology of acne, an overview. J. Eur. Acad. Dermatol. Venereol., 2017, 31(Suppl. 5), 8-12.
[http://dx.doi.org/10.1111/jdv.14374] [PMID: 28805938]
[13]
Fox, L.; Csongradi, C.; Aucamp, M.; du Plessis, J.; Gerber, M. Treatment modalities for acne. Molecules, 2016, 21(8), 8.
[http://dx.doi.org/10.3390/molecules21081063] [PMID: 27529209]
[14]
Solomon, C.G.; Zaenglein, A.L. Clinical practice acne vulgaris. N. Engl. J. Med., 2018, 14(14), 1343-1352.
[http://dx.doi.org/10.1056/NEJMcp1702493]
[15]
Zhai, Y.; Zhai, G. Advances in lipid-based colloid systems as drug carrier for topic delivery. J. Control. Release, 2014, 193, 90-99.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.054] [PMID: 24939745]
[16]
Hua, S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front. Pharmacol., 2015, 6, 219.
[http://dx.doi.org/10.3389/fphar.2015.00219] [PMID: 26483690]
[17]
Sala, M.; Diab, R.; Elaissari, A.; Fessi, H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int. J. Pharm., 2018, 535(1-2), 1-17.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.046] [PMID: 29111097]
[18]
Gollnick, H.; Cunliffe, W.; Berson, D.; Dreno, B.; Finlay, A.; Leyden, J.J.; Shalita, A.R.; Thiboutot, D. Management of acne: A report from a global alliance to improve outcomes in acne. J. Am. Acad. Dermatol., 2003, 49(1)(Suppl.), S1-S37.
[http://dx.doi.org/10.1067/mjd.2003.618] [PMID: 12833004]
[19]
Scott, L.J. Trifarotene: First Approval. Drugs, 2019, 79(17), 1905-1909.
[http://dx.doi.org/10.1007/s40265-019-01218-6] [PMID: 31713811]
[20]
Gollnick, H. Current concepts of the pathogenesis of acne: Implications for drug treatment. Drugs, 2003, 63(15), 1579-1596.
[http://dx.doi.org/10.2165/00003495-200363150-00005] [PMID: 12887264]
[21]
Nasri, H.; Bahmani, M.; Shahinfard, N.; Moradi Nafchi, A.; Saberianpour, S.; Rafieian Kopaei, M. Medicinal plants for the treatment of acne vulgaris: A review of recent evidences. Jundishapur J. Microbiol., 2015, 8(11), e25580.
[http://dx.doi.org/10.5812/jjm.25580] [PMID: 26862380]
[22]
Vyas, A.; Kumar Sonker, A.; Gidwani, B. Carrier-based drug delivery system for treatment of acne. ScientificWorldJournal, 2014, 2014, 276260.
[http://dx.doi.org/10.1155/2014/276260] [PMID: 24688376]
[23]
Shrestha, H.; Bala, R.; Arora, S. Lipid-based drug delivery systems. J. Pharm. (Cairo), 2014, 2014, 801820.
[http://dx.doi.org/10.1155/2014/801820] [PMID: 26556202]
[24]
Date, A.A.; Naik, B.; Nagarsenker, M.S. Novel drug delivery systems: Potential in improving topical delivery of antiacne agents. Skin Pharmacol. Physiol., 2006, 19(1), 2-16.
[http://dx.doi.org/10.1159/000089138] [PMID: 16247244]
[25]
Hamishehkar, H.; Rahimpour, Y.; Kouhsoltani, M. Niosomes as a propitious carrier for topical drug delivery. Expert Opin. Drug Deliv., 2013, 10(2), 261-272.
[http://dx.doi.org/10.1517/17425247.2013.746310] [PMID: 23252629]
[26]
Rai, A.K.; Alam, G.; Singh, A.P.; Verma, N.K. Niosomes : An approach to current drug delivery-A review. Int. J. Adv. Pharm., 2017, 6(2), 2.
[27]
Garg, V.; Singh, H.; Bimbrawh, S.; Singh, S.K.; Gulati, M.; Vaidya, Y.; Kaur, P. Ethosomes and transfersomes: Principles, perspectives and practices. Curr. Drug Deliv., 2017, 14(5), 613-633.
[http://dx.doi.org/10.2174/1567201813666160520114436] [PMID: 27199229]
[28]
Opatha, S.A.T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics, 2020, 12(9), 9.
[http://dx.doi.org/10.3390/pharmaceutics12090855] [PMID: 32916782]
[29]
Chauhan, N.; Kumar, K.; Pant, N. An updated review on transfersomes: A novel vesicular system for transdermal drug delivery. Univers. J. Pharm. Res., 2017, 2(4), 49-52.
[http://dx.doi.org/10.22270/ujpr.v2i4.RW2]
[30]
Grace, F. Herbal ethosomes- A novel approach in herbal drug technology. Am. J. Ethnomedicine, 2014, 1(4), 226-230.
[31]
Verma, P.; Pathak, K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(3), 274-282.
[http://dx.doi.org/10.4103/0110-5558.72415] [PMID: 22247858]
[32]
Aggarwal, D.; Nautiyal, U. Ethosomes: A review. Int. J. Pharm. Med. Res., 2016, 4(4), 354-363.
[33]
Armia, S.; Garhy, O.; Abdelkader, H. Cubosomes: Composition, preparation, and drug delivery applications. J. Adv. Biomed. Pharm. Sci., 2020, 3(1), 1-9.
[http://dx.doi.org/10.21608/jabps.2019.16887.1057]
[34]
Chettupalli, A.K.; Ananthula, M.; Amarachinta, P.R.; Bakshi, V.; Yata, V.K. Design, formulation, in-vitro and ex-vivo evaluation of atazanavir loaded cubosomal gel. Biointerface Res. Appl. Chem., 2020, 11(4), 12037-12054.
[http://dx.doi.org/10.33263/BRIAC114.1203712054]
[35]
Geszke-Moritz, M.; Moritz, M. Solid Lipid Nanoparticles as Attractive Drug Vehicles: Composition, Properties and Therapeutic Strategies; Elsevier Ltd: Amsterdam, 2016.
[http://dx.doi.org/10.1016/j.msec.2016.05.119]
[36]
Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003] [PMID: 18992314]
[37]
Wissing, S.A.; Müller, R.H. Cosmetic applications for solid lipid nanoparticles (SLN). Int. J. Pharm., 2003, 254(1), 65-68.
[http://dx.doi.org/10.1016/S0378-5173(02)00684-1] [PMID: 12615411]
[38]
Kassem, A.A.; Abd El-Alim, S.H. Vesicular nanocarriers: A potential platform for dermal and transdermal drug delivery. In: Nanopharmaceuticals: Principles and Applications; Yata, V.K.; Ranjan, S.; Dasgupta, N.; Lichtfouse, E., Eds.; Springer International Publishing: Cham, 2021; Vol. 2, pp. 155-209.
[http://dx.doi.org/10.1007/978-3-030-44921-6_5]
[39]
Jain, N.K. Controlled and Novel Drug Delivery; CBS Publishers & Distributors: New Delhi, India, 2013.
[40]
Kumar, V.; Banga, A.K. Intradermal and follicular delivery of adapalene liposomes. Drug Dev. Ind. Pharm., 2016, 42(6), 871-879.
[http://dx.doi.org/10.3109/03639045.2015.1082580] [PMID: 27031916]
[41]
Jain, S.; Kale, D.P.; Swami, R.; Katiyar, S.S. Codelivery of benzoyl peroxide & adapalene using modified liposomal gel for improved acne therapy. Nanomedicine (Lond.), 2018, 13(12), 1481-1493.
[http://dx.doi.org/10.2217/nnm-2018-0002] [PMID: 29972675]
[42]
Eroğlu, İ. Liposome-based combination therapy for acne treatment. J. Liposome Res., 2020, 30(3), 263-273.
[http://dx.doi.org/10.1080/08982104.2019.1630646] [PMID: 31185768]
[43]
Bhardwaj, A.; Kori, M. Formulation development and evaluation of topical liposomal gel for management of acne. In: International Conference on Contemporary Technological Solutions towards fulfilment of Social Needs; 2019 Sept 28-29; Bhopal, India.
[44]
Fabbrocini, G.; Capasso, C.; Donnarumma, M.; Cantelli, M.; Le Maître, M.; Monfrecola, G.; Emanuele, E. A peel-off facial mask comprising myoinositol and trehalose-loaded liposomes improves adult female acne by reducing local hyperandrogenism and activating autophagy. J. Cosmet. Dermatol., 2017, 16(4), 480-484.
[http://dx.doi.org/10.1111/jocd.12340] [PMID: 28342238]
[45]
Tripura Sundari, P.; Anushree, H. Novel delivery systems: Current trend in cosmetic industry. Eur. J. Pharm. Med. Res., 2017, 4(8), 8.
[46]
Muzzalupo, R.; Tavano, L. Niosomal drug delivery for transdermal targeting: Recent advances. Res. Rep. Transdermal Drug Deliv., 2015, 4, 23-33.
[http://dx.doi.org/10.2147/RRTD.S64773]
[47]
Goyal, G.; Garg, T.; Malik, B.; Chauhan, G.; Rath, G.; Goyal, A.K. Development and characterization of niosomal gel for topical delivery of benzoyl peroxide. Drug Deliv., 2015, 22(8), 1027-1042.
[http://dx.doi.org/10.3109/10717544.2013.855277] [PMID: 24251352]
[48]
Vyas, J.; Vyas, P.; Raval, D.; Paghdar, P. Development of topical niosomal gel of benzoyl peroxide. ISRN Nanotechnol., 2011, 2011(1996), 1-6.
[http://dx.doi.org/10.5402/2011/503158]
[49]
Jigar, V.; Vishal, G.; Tejas, G.; Vishal, C.; Umesh, U. Formulation and characterization of topical gel of erythromycin entrapped into nio-somesfile:///F:/MPharm/Niosomes/Niosomal Gel of Benzoyl Peroxide.pdf. Int. J. Pharm. Tech. Res., 2011, 3(3), 1714-1718.
[50]
Budhiraja, A.; Dhingra, G. Development and characterization of a novel antiacne niosomal gel of rosmarinic acid. Drug Deliv., 2015, 22(6), 723-730.
[http://dx.doi.org/10.3109/10717544.2014.903010] [PMID: 24786487]
[51]
Benson, H.A. Transfersomes for transdermal drug delivery. Expert Opin. Drug Deliv., 2006, 3(6), 727-737.
[http://dx.doi.org/10.1517/17425247.3.6.727] [PMID: 17076595]
[52]
Vasanth, S.; Dubey, A.; Ravi, G.S.; Lewis, S.A.; Ghate, V.M.; El-Zahaby, S.A.; Hebbar, S. Development and investigation of vitamin c-enriched adapalene-loaded transfersome gel: A collegial approach for the treatment of acne vulgaris. AAPS PharmSciTech, 2020, 21(2), 61.
[http://dx.doi.org/10.1208/s12249-019-1518-5] [PMID: 31915948]
[53]
Abdellatif, A.A.H.; Tawfeek, H.M. Transfersomal nanoparticles for enhanced transdermal delivery of clindamycin. AAPS PharmSciTech, 2016, 17(5), 1067-1074.
[http://dx.doi.org/10.1208/s12249-015-0441-7] [PMID: 26511937]
[54]
Thakur, N.; Jain, P.; Jain, V. Formulation development and evaluation of transferosomal gel. J. Drug Deliv. Ther., 2018, 8(5), 5.
[http://dx.doi.org/10.22270/jddt.v8i5.1826]
[55]
Nainwal, N.; Jawla, S.; Singh, R.; Saharan, V.A. Transdermal applications of ethosomes - a detailed review. J. Liposome Res., 2019, 29(2), 103-113.
[http://dx.doi.org/10.1080/08982104.2018.1517160] [PMID: 30156120]
[56]
Kausar, H.; Mujeeb, M.; Ahad, A.; Moolakkadath, T.; Aqil, M.; Ahmad, A.; Akhter, M.H. Optimization of ethosomes for topical thymoquinone delivery for the treatment of skin acne. J. Drug Deliv. Sci. Technol., 2019, 49, 177-187.
[http://dx.doi.org/10.1016/j.jddst.2018.11.016]
[57]
Mistry, A.; Ravikumar, P. Development and evaluation of azelaic acid based ethosomes for topical delivery for the treatment of acne. Indian J. Pharm. Educ. Res., 2016, 50(3s), S232-S243.
[http://dx.doi.org/10.5530/ijper.50.3.34]
[58]
Yu, Z.; Lv, H.; Han, G.; Ma, K. Ethosomes loaded with cryptotanshinone for acne treatment through topical gel formulation. PLoS One, 2016, 11(7), e0159967.
[http://dx.doi.org/10.1371/journal.pone.0159967] [PMID: 27441661]
[59]
Karami, Z.; Hamidi, M. Cubosomes: Remarkable drug delivery potential. Drug Discov. Today, 2016, 21(5), 789-801.
[http://dx.doi.org/10.1016/j.drudis.2016.01.004] [PMID: 26780385]
[60]
Nithya, R.; Jerold, P.; Siram, K. Cubosomes of dapsone enhanced permeation across the skin. J. Drug Deliv. Sci. Technol., 2018, 48, 75-81.
[http://dx.doi.org/10.1016/j.jddst.2018.09.002]
[61]
Jain, A. Topical delivery of erythromycin through cubosomes for acne. Pharm. Nanotechnol., 2018, 6(1), 38-47.
[http://dx.doi.org/10.2174/2211738506666180209100222]
[62]
Patel, V.B.; Misra, A.N.; Marfatia, Y.S. Preparation and comparative clinical evaluation of liposomal gel of benzoyl peroxide for acne. Drug Dev. Ind. Pharm., 2001, 27(8), 863-869.
[http://dx.doi.org/10.1081/DDC-100107251] [PMID: 11699839]
[63]
Patel, V.; Misra, A.; Marfatia, Y. Clinical assessment of the combination therapy with liposomal gels of tretinoin and benzoyl peroxide in acne. AAPS PharmSciTech, 2001, 2(3), E-TN4.
[http://dx.doi.org/10.1208/pt0203_tn4]
[64]
Honzak, L.; Šentjurc, M. Development of liposome encapsulated clindamycin for treatment of acne vulgaris. Pflugers Archiv., 2000, 440(Suppl. 5), R44-R45.
[http://dx.doi.org/10.1007/s004240000000]
[65]
Ioele, G.; Cione, E.; Risoli, A.; Genchi, G.; Ragno, G. Accelerated photostability study of tretinoin and isotretinoin in liposome formulations. Int. J. Pharm., 2005, 293(1-2), 251-260.
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.012] [PMID: 15778063]
[66]
Bhalerao, S.S.; Raje Harshal, A. Preparation, optimization, characterization, and stability studies of salicylic acid liposomes. Drug Dev. Ind. Pharm., 2003, 29(4), 451-467.
[http://dx.doi.org/10.1081/DDC-120018380] [PMID: 12737538]
[67]
Patel, V.B.; Misra, A.; Marfatia, Y.S. Topical liposomal gel of tretinoin for the treatment of acne: Research and clinical implications. Pharm. Dev. Technol., 2000, 5(4), 455-464.
[http://dx.doi.org/10.1081/PDT-100102029] [PMID: 11109245]
[68]
Manconi, M.; Valenti, D.; Sinico, C.; Lai, F.; Loy, G.; Fadda, A.M. Niosomes as carriers for tretinoin. II. Influence of vesicular incorporation on tretinoin photostability. Int. J. Pharm., 2003, 260(2), 261-272.
[http://dx.doi.org/10.1016/S0378-5173(03)00268-0] [PMID: 12842345]
[69]
Manconi, M.; Sinico, C.; Valenti, D.; Lai, F.; Fadda, A.M. Niosomes as carriers for tretinoin. III. A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin. Int. J. Pharm., 2006, 311(1-2), 11-19.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.045] [PMID: 16439071]
[70]
Patel, R.P.; Patel, K.P.; Modi, K.A.; Pathak, C.J. Novel anti-acne drug delivery system of tretinoin. Intl. R. J. Pharm., 2011, 1(2), 65-71.
[71]
Gupta, M.; Prajapati, R.N.; Singh, N.; Prajapati, S.K. Novel clindamycin loaded transfersomes formulation for effective management of acne. World J. Pharm. Res., 2017, 6(6), 765-773.
[72]
Nangare, S.; Bhatane, D.; Mali, R.; Shitole, M. Development of novel freeze-dried mulberry leaves extract-based transfersomal gel. Turk. J. Pharm. Sci., 2021, 18(1), 44-55.
[http://dx.doi.org/10.4274/tjps.galenos.2019.98624] [PMID: 33633053]
[73]
Apriani, E.F.; Rosana, Y.; Iskandarsyah, I. Formulation, characterization, and in vitro testing of azelaic acid ethosome-based cream against Propionibacterium acnes for the treatment of acne. J. Adv. Pharm. Technol. Res., 2019, 10(2), 75-80.
[http://dx.doi.org/10.4103/japtr.JAPTR_289_18] [PMID: 31041186]
[74]
Sandhya, P.; Snehalata, J. Formulation development and evaluation of antiacne activity of ethosomal gel prepared using Plumbago zeylanica root extract. Int. J. Res. Pharm. Sci., 2020, 11(4), 5511-5516.
[http://dx.doi.org/10.26452/ijrps.v11i4.3185]
[75]
Venugopal, V. Formulation development and characterization of tea tree oil loaded ethosomes. Indones. J. Pharm., 2016, 27(1), 44.
[http://dx.doi.org/10.14499/indonesianjpharm27iss1pp44]
[76]
Mishra, R.; Shende, S.; Jain, P.K.; Jain, V. Formulation and evaluation of gel containing ethosomes entrapped with tretinoin. J. Drug Deliv. Ther. Art, 2018, 8(5-s), 315-321.
[http://dx.doi.org/10.22270/jddt.v8i5-s.1982]
[77]
Sureka, S.; Gupta, G.; Agarwal, M.; Mishra, A.; K Singh, S.; P Singh, R.; Sah, S.K.; de Jesus, A.; Pinto, T.; Dua, K. Formulation, in-vitro and ex-vivo evaluation of tretinoin loaded cubosomal gel for the treatment of acne. Recent Pat. Drug Deliv. Formul., 2018, 12(2), 121-129.
[http://dx.doi.org/10.2174/1872211312666180213121117] [PMID: 29437029]
[78]
Garcês, A.; Amaral, M.H.; Sousa, Lobo J. M.; Silva, A. C. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur. J. Pharm. Sci., 2018, 112, 159-167.
[http://dx.doi.org/10.1016/j.ejps.2017.11.023]
[79]
Kumar, R. Lipid-based nanoparticles for drug-delivery systems. In: Nanocarriers for Drug Delivery; Mohapatra, S.S.; Ranjan, S.; Dasgupta, N.; Mishra, R.K.; Thomas, S., Eds.; Elsevier: Amsterdam, 2019; pp. 249-284.
[http://dx.doi.org/10.1016/B978-0-12-814033-8.00008-4]
[80]
Jain, A.K.; Jain, A.; Garg, N.K.; Agarwal, A.; Jain, A.; Jain, S.A.; Tyagi, R.K.; Jain, R.K.; Agrawal, H.; Agrawal, G.P. Adapalene loaded solid lipid nanoparticles gel: An effective approach for acne treatment. Colloids Surf. B Biointerfaces, 2014, 121, 222-229.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.041] [PMID: 25016424]
[81]
Pokharkar, V.B.; Mendiratta, C.; Kyadarkunte, A.Y.; Bhosale, S.H.; Barhate, G.A. Skin delivery aspects of benzoyl peroxide-loaded solid lipid nanoparticles for acne treatment. Ther. Deliv., 2014, 5(6), 635-652.
[http://dx.doi.org/10.4155/tde.14.31] [PMID: 25090278]
[82]
Raza, K.; Singh, B.; Singal, P.; Wadhwa, S.; Katare, O.P. Systematically optimized biocompatible isotretinoin-loaded Solid Lipid Nanoparti-cles (SLNs) for topical treatment of acne. Colloids Surf. B Biointerfaces, 2013, 105, 67-74.
[http://dx.doi.org/10.1016/j.colsurfb.2012.12.043] [PMID: 23357735]
[83]
Kelidari, H.R.; Saeedi, M.; Akbari, J.; Morteza-Semnani, K.; Gill, P.; Valizadeh, H.; Nokhodchi, A. Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles. Colloids Surf. B Biointerfaces, 2015, 128, 473-479.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.046] [PMID: 25797482]
[84]
Silva, E.L.; Carneiro, G.; De Araújo, L.A.; Trindade, M.J.; Yoshida, M.I.; Oréfice, R.L.; Farias, L.M.; De Carvalho, M.A.; Dos Santos, S.G.; Goulart, G.A.; Alves, R.J.; Ferreira, L.A. Solid lipid nanoparticles loaded with retinoic acid and lauric acid as an alternative for topical treatment of acne vulgaris. J. Nanosci. Nanotechnol., 2015, 15(1), 792-799.
[http://dx.doi.org/10.1166/jnn.2015.9184] [PMID: 26328443]
[85]
Patel, D.K.; Tripathy, S.; Nair, S.K.; Kesharwani, R. Nanostructured lipid carrier (NLC) a modern approach for topical delivery: A review. World J. Pharm. Pharm. Sci., 2013, 2(3), 921-938.
[86]
Jain, A.; Garg, N.K.; Jain, A.; Kesharwani, P.; Jain, A.K.; Nirbhavane, P.; Tyagi, R.K. A synergistic approach of adapalene-loaded nanostructured lipid carriers, and vitamin C co-administration for treating acne. Drug Dev. Ind. Pharm., 2016, 42(6), 897-905.
[http://dx.doi.org/10.3109/03639045.2015.1104343] [PMID: 26577703]
[87]
Malik, D.S.; Kaur, G. Exploring therapeutic potential of azelaic acid loaded NLCs for the treatment of acne vulgaris. J. Drug Deliv. Sci. Technol., 2020, 55, 101418.
[http://dx.doi.org/10.1016/j.jddst.2019.101418]
[88]
Fatima, N.; Rehman, S.; Nabi, B.; Baboota, S.; Ali, J. Harnessing nanotechnology for enhanced topical delivery of clindamycin phosphate. J. Drug Deliv. Sci. Technol., 2019, 54, 101253.
[http://dx.doi.org/10.1016/j.jddst.2019.101253]
[89]
Ghate, V.M.; Lewis, S.A.; Prabhu, P.; Dubey, A.; Patel, N. Nanostructured lipid carriers for the topical delivery of tretinoin. Eur. J. Pharm. Biopharm., 2016, 108, 253-261.
[http://dx.doi.org/10.1016/j.ejpb.2016.07.026] [PMID: 27519827]
[90]
Kelidari, H.R.; Saeedi, M.; Hajheydari, Z.; Akbari, J.; Morteza-Semnani, K.; Akhtari, J.; Valizadeh, H.; Asare-Addo, K.; Nokhodchi, A. Spironolactone loaded nanostructured lipid carrier gel for effective treatment of mild and moderate acne vulgaris: A randomized, double-blind, prospective trial. Colloids Surf. B Biointerfaces, 2016, 146, 47-53.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.042] [PMID: 27248464]
[91]
Stecová, J.; Mehnert, W.; Blaschke, T.; Kleuser, B.; Sivaramakrishnan, R.; Zouboulis, C.C.; Seltmann, H.; Korting, H.C.; Kramer, K.D.; Schäfer-Korting, M. Cyproterone acetate loading to lipid nanoparticles for topical acne treatment: Particle characterisation and skin uptake. Pharm. Res., 2007, 24(5), 991-1000.
[http://dx.doi.org/10.1007/s11095-006-9225-9] [PMID: 17372681]
[92]
Liu, J.; Hu, W.; Chen, H.; Ni, Q.; Xu, H.; Yang, X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int. J. Pharm., 2007, 328(2), 191-195.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.007] [PMID: 16978810]
[93]
Vijayan, V.; Aafreen, S.; Sakthivel, S.; Reddy, K.R. Formulation and characterization of solid lipid nanoparticles loaded Neem oil for topical treatment of acne. J. Acute Dis., 2013, 2(4), 282-286.
[http://dx.doi.org/10.1016/S2221-6189(13)60144-4]
[94]
Mandawgade, S.D.; Patravale, V.B. Development of SLNs from natural lipids: Application to topical delivery of tretinoin. Int. J. Pharm., 2008, 363(1-2), 132-138.
[http://dx.doi.org/10.1016/j.ijpharm.2008.06.028] [PMID: 18657601]
[95]
Castro, G.A.; Oliveira, C.A.; Mahecha, G.A.B.; Ferreira, L.A.M. Comedolytic effect and reduced skin irritation of a new formulation of all-trans retinoic acid-loaded solid lipid nanoparticles for topical treatment of acne. Arch. Dermatol. Res., 2011, 303(7), 513-520.
[http://dx.doi.org/10.1007/s00403-011-1130-3] [PMID: 21298279]
[96]
Ahmad Nasrollahi, S.; Koohestani, F.; Naeimifar, A.; Samadi, A.; Vatanara, A.; Firooz, A. Preparation and evaluation of adapalene nanostructured lipid carriers for targeted drug delivery in acne. Dermatol. Ther., 2021, 34(2), e14777.
[http://dx.doi.org/10.1111/dth.14777] [PMID: 33433054]
[97]
Patwekar, S.L.; Pedewad, S.R.; Gattani, S. Development and evaluation of nanostructured lipid carriers-based gel of isotretinoin. Particul. Sci. Technol., 2018, 36(7), 832-843.
[http://dx.doi.org/10.1080/02726351.2017.1305026]
[98]
Kovács, A.; Berkó, S.; Csányi, E.; Csóka, I. Development of nanostructured lipid carriers containing salicyclic acid for dermal use based on the Quality by Design method. Eur. J. Pharm. Sci., 2017, 99, 246-257.
[http://dx.doi.org/10.1016/j.ejps.2016.12.020] [PMID: 28012940]
[99]
C. for F. S. and A. Nutrition Guidance for industry: Safety of nanomaterials in cosmetic products., 2020. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-safety-nanomaterials-cosmetic-products
[100]
European Commission. Directorate General for Health and Food Safety. Guidance on the safety assessment of nanomaterials in cosmetics., 2019. Available from: https://data.europa.eu/doi/10.2875/40446
[101]
Office of the Commissioner. Considering whether an FDA-regulated product involves the application of nanotechnology. U.S. Food and Drug Administration, 2019. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/consideringwhether-fda-regulated-product-involves-application-nanotechnology
[102]
Ragelle, H.; Danhier, F.; Préat, V.; Langer, R.; Anderson, D.G. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures. Expert Opin. Drug Deliv., 2017, 14(7), 851-864.
[http://dx.doi.org/10.1080/17425247.2016.1244187] [PMID: 27730820]
[103]
Nanotechnology—over a decade of progress and innovation: A report by the U.S. food and drug administration., 2020. Available from: http://www.fda.gov/media/140395/download

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy