Skip to main content
Log in

Bioactivity inspired C19-diterpenoid alkaloids for overcoming multidrug-resistant cancer

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The pharmacological activities of C19-diterpenoid alkaloids are related to their basic skeletons (e.g., aconitine-type or lycoctonine-type). Also, few studies have been reported on the chemosensitizing effects of diterpenoid alkaloids. Consequently, this study was aimed at determining the chemosensitizing effects of synthetic derivatives of lycoctonine-type C19-diterpenoid alkaloids on a P-glycoprotein (P-gp)-overexpressing multidrug-resistant (MDR) cancer cell line KB-VIN. The acyl-derivatives of delpheline and delcosine showed moderate cytotoxicity against chemosensitive cancer cell lines. Among non-cytotoxic synthetic analogs (114), several derivatives effectively and significantly sensitized MDR cells by interfering with the drug transport function of P-gp to three anticancer drugs, vincristine, paclitaxel, and doxorubicin. The chemosensitizing effect of derivatives 2, 4, and 6 on KB-VIN cells against vincristine were more potent than 5 μM verapamil, and derivatives 4 and 13 were more effective than 5 μM verapamil for paclitaxel. Among them, 2 in particular increased the sensitivity of KB-VIN cells to vincristine by 253-fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang FP, Chen QH, Liu XY (2010) Diterpenoid alkaloids. Nat Prod Rep 27:529–570

    Article  CAS  Google Scholar 

  2. Amiya T, Bando H (1988) Aconitum alkaloids. In: Brossi A (ed) The Alkaloids, vol 34. Academic Press, San Diego, pp 95–179

    Google Scholar 

  3. Benn MH, Jacyno JM (1983) The toxicology and pharmacology of diterpenoid alkaloids. In: Pelletier SW (ed) Alkaloids: Chemical and Biological Perspectives, Vol. 1; Wiley-Interscience: New York, pp 153–210

  4. Baumann M, Krause M (2004) Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results. Radiother Oncol 72:257–266

    Article  CAS  Google Scholar 

  5. Diedelot C, Mirjolet JF, Barberi-Heyob M (2002) Radiation could induce p53-independent and cell cycle-unrelated apoptosis in 5-fluorouracil radiosensitized head and neck carcinoma cells. Can J Physiol Pharmacol 80:638–643

    Article  Google Scholar 

  6. Haveman J, Castro-Kreder N, Rodermond HM, van Bree C, Franken NA, Stalpers LJ, Zdzienicka MZ, Peters GJ (2004) Cellular response of X-ray sensitive hamster mutant cell lines to gemcitabine, cisplatin and 5-fluorouracil. Oncol Rep 12:187–192

    CAS  PubMed  Google Scholar 

  7. Kvols LK (2005) Radiation sensitizers: a selective review of molecules targeting DNA and non-DNA targets. J Nucl Med 46:187S-190S

    CAS  PubMed  Google Scholar 

  8. Meng LH, Zhang JS, Ding J (2001) Salvicine, a novel DNA topoisomerase II inhibitor, exerting its effects by trapping enzyme-DNA cleavage complexes. Biochem Pharmacol 62:733–741

    Article  CAS  Google Scholar 

  9. Pauwels B, Korst AEC, Andriessen V, Baay MFD, Pattyn GGO, Lambrechts HAJ, de Pooter CMJ, Lardon F, Vermorken JB (2005) Unraveling the mechanism of radiosensitization by gemcitabine: the role of TP53. Radiat Res 164:642–650

    Article  CAS  Google Scholar 

  10. Qing C, Jiang C, Zhang JS, Ding J (2001) Induction of apoptosis in human leukemia K-562 and gastric carcinoma SGC-7901 cells by salvicine, a novel anticancer compound. Anticancer Drugs 12:51–56

    Article  CAS  Google Scholar 

  11. Sonnemann J, Gekeler V, Ahibrecht K, Brischwein K, Liu C, Bader P, Muller C, Niethammer D, Beck JF (2004) Down-regulation of protein kinase Cη by antisense oligonucleotides sensitises A549 lung cancer cells to vincristine and paclitaxel. Cancer Lett 209:177

    Article  CAS  Google Scholar 

  12. Zhang M, Boyer M, Rivory L, Hong A, Clarke S, Stevens G, Fife K (2004) Radiosensensitization of vinorelbine and gemcitabine in NCL-H460 non-small-cell lung cancer cell. Int J Radiat Oncol Biol Phys 58:353–360

    Article  CAS  Google Scholar 

  13. Chen S, Meng L, El-Demerdash FM, Zhou L, Rizvi SAH, Cui L, Kang W (2020) Review of compounds and pharmacological effects of Delphinium. J Chem. https://doi.org/10.1155/2020/9375619

    Article  Google Scholar 

  14. Hao DC, Xiao PG, Gu XJ (2015) Chemical and biological studies of Aconitum pharmaceutical resources. In: Hao DC, Gu XJ, Xiao PG (eds) Medicinal Plants -Chemistry, Biology and Omics-. Elsevier Amsterdam, pp 253–292

  15. Liang XX, Gao YY, Luan SX (2018) Two decades of advances in diterpenoid alkaloids with cytotoxicity activities. RSC Adv 8:23937–23946

    Article  CAS  Google Scholar 

  16. Ren MY, Yu QT, Shi CY, Luo JB (2017) Anticancer activities of C18-, C19–, C20-, and bis-diterpenoid alkaloids derived from genus aconitum. Molecules 22:267

    Article  Google Scholar 

  17. Shen Y, Liang WJ, Shi YN, Kennelly EJ, Zhao DK (2020) Structual diversity, bioactivities, and biosynthesis of natural diterpenoid alkaloids. Nat Prod Rep 37:763–796

    Article  CAS  Google Scholar 

  18. Wada K, Yamashita H (2019) Cytotoxic effects of diterpenoid alkaloids against human cancer cells. Molecules 24:2317

    Article  CAS  Google Scholar 

  19. Wada K, Hazawa M, Takahashi K, Mori T, Kawahara N, Kashiwakura I (2007) Inhibitory effects of diterpenoid alkaloids on the growth of A172 human malignant cells. J Nat Prod 70:1854–1858

    Article  CAS  Google Scholar 

  20. Hazawa M, Wada K, Takahashi K, Mori T, Kawahara N, Kashiwakura I (2009) Suppressive effects of novel derivatives prepared from Aconitum alkaloids on tumor growth. Invest New Drugs 27:111–119

    Article  CAS  Google Scholar 

  21. Wada K, Hazawa M, Takahashi K, Mori T, Kawahara N, Kashiwakura I (2011) Structure-activity relationships and the cytotoxic effects of novel diterpenoid alkaloid derivatives against A549 human lung carcinoma cells. J Nat Med 65:43–49

    Article  CAS  Google Scholar 

  22. Wada K, Ohkoshi E, Bastow KF, Morris-Natschke SL, Lee KH (2012) Cytotoxic esterified diterpenoid alkaloid derivatives with increased selectivity against a drug-resistant cancer cell line. Bioorg Med Chem Lett 22:249–252

    Article  CAS  Google Scholar 

  23. Wada K, Ohkoshi E, Zhao Yu, Goto M, Morris-Natschke SL, Lee KH (2015) Evaluation of Aconitum diterpenoid alkaloids as antiproliferative agents. Bioorg Med Chem Lett 25:1525–1531

    Article  CAS  Google Scholar 

  24. Wada K, Goto M, Shimizu T, Kusanagi N, Li KP, Lee KH, Yamashita H (2019) Structure-activity relationships and evaluation of esterified diterpenoid alkaloid derivatives as antiproliferative agents. J Nat Med 73:789–799

    Article  CAS  Google Scholar 

  25. Calcabrini A, Meschini S, Stringaro A, Cianfriglia M, Aracia G, Molinari A (2000) Detection of P-glycoprotein in the nuclear envelope of multidrug resistant cells. Histochem J 32:599–606

    Article  CAS  Google Scholar 

  26. Dennison JB, Jones DR, Renbarger JL, Hall SD (2007) Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes. J Pharmacol Exp Ther 321:553–563

    Article  CAS  Google Scholar 

  27. Bando H, Wada K, Tanaka J, Kimura S, Hasegawa E, Amiya T (1989) Two new diterpenoid alkaloids from Delphinium Pacific Giant and revised 13C-NMR assignment of delpheline. Heterocycles 29:1293–1300

    Article  CAS  Google Scholar 

  28. Wada K, Yamamoto T, Bando H, Kawahara N (1992) Four diterpenoid alkaloids from Delphinium elatum. Phytochemistry 31:2135–2138

    Article  CAS  Google Scholar 

  29. Wada K, Bando H, Amiya T (1985) Two new C20-diterpenoid alkaloids from Aconitum yesoense var. macroyesoense (NAKAI) TAMURA. Structures of dehydrolucidusculine and N-deethyldehydrolucidusculine. Heterocycles 23:2473–2477

    Article  CAS  Google Scholar 

  30. Nakagawa-Goto K, Oda A, Hamel E, Ohkoshi E, Lee KH, Goto M (2015) Development of a novel class of tubulin inhibitor from desmosdumotin B with a hydroxylated bicyclic B-ring. J Med Chem 58:2378–2389

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate critical comments, suggestions, and editing of the manuscript by Dr. Susan L. Morris-Natschke (UNC-CH). This study was supported in part by NIH grant CA177584 from the National Cancer Institute awarded to K.H.L. as well as the Eshelman Institute for Innovation, Chapel Hill, North Carolina, awarded to M.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Wada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wada, K., Goto, M., Ohkoshi, E. et al. Bioactivity inspired C19-diterpenoid alkaloids for overcoming multidrug-resistant cancer. J Nat Med 76, 796–802 (2022). https://doi.org/10.1007/s11418-022-01629-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-022-01629-y

Keywords

Navigation