Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adsorbed cobalt porphyrins act like metal surfaces in electrocatalysis

This article has been updated

Abstract

Electrodes chemically modified with molecular active sites are potent catalysts for energy conversion reactions. Such electrodes are typically presumed to operate by the same redox mediation mechanisms as the analogous soluble molecules, with electron transfer and substrate activation in separate elementary steps. Here we uncover solvent-dependent concerted reaction mechanisms for cobalt porphyrins attached to glassy carbon electrodes by flexible aliphatic linkages. In acetonitrile, outer-sphere CoII/I reduction mediates H2 evolution in a stepwise sequence. However, in aqueous media, outer-sphere reduction is not observed and H2 evolution proceeds instead by concerted proton–electron transfer pathways typical of metal surfaces. Consequently, catalysis is not defined by the reduction potential of the parent molecule, but rather by the free energy of hydrogen binding. We attribute these mechanistic changes to electrostatic coupling between the molecule and the surface arising from adsorption. Our results motivate a re-examination of the reaction mechanisms of and design principles for molecularly modified electrodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation of CH-MTPP electrodes.
Fig. 2: Characterization of CH-CoTPP.
Fig. 3: CH-CoTPP displays outer-sphere ET in acetonitrile.
Fig. 4: CH-CoTPP operates by redox mediation in acetonitrile.
Fig. 5: CH-CoTPP does not display ET waves in aqueous media except with co-solvent.
Fig. 6: Distinct mechanisms for HER by CH-CoTPP and soluble analogue in aqueous media.
Fig. 7: CH-CoTPP catalyses HER by concerted mechanisms in aqueous media. Kinetic data for HER by CH-CoTPP in aqueous acidic media.
Fig. 8: Mechanistic model for solvent dependence of ET behaviour of CH-CoTPP.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

Change history

  • 19 July 2022

    In the version of this article initially published, an extraneous supplementary information file, the Nature Research Reporting Summary, was posted online and has since been removed.

References

  1. Murray, R. W. Chemically modified electrodes. Acc. Chem. Res. 13, 135–141 (1980).

    Article  CAS  Google Scholar 

  2. Murray, R. W. Chemically modified electrodes for electrocatalysis. Philos. Trans. R. Soc. A 302, 253–265 (1981).

    CAS  Google Scholar 

  3. Bullock, R. M., Das, A. K. & Appel, A. M. Surface immobilization of molecular electrocatalysts for energy conversion. Chem. Eur. J. 23, 7626–7641 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, R. & Warren, J. J. Recent developments in metalloporphyrin electrocatalysts for reduction of small molecules: strategies for managing electron and proton transfer reactions. ChemSusChem 14, 293–302 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Dalle, K. E. et al. Electro- and solar-driven fuel synthesis with first row transition metal complexes. Chem. Rev. 119, 2752–2875 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Banerjee, S., Anayah, R. I., Gerke, C. S. & Thoi, V. S. From molecules to porous materials: integrating discrete electrocatalytic active sites into extended frameworks. ACS Cent. Sci. 6, 1671–1684 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berben, L. & Peters, J. C. Hydrogen evolution by cobalt tetraiminecatalysts adsorbed on electrode surfaces. Chem. Commun. 46, 398–400 (2009).

    Article  Google Scholar 

  8. Canales, C., Varas-Concha, F., Mallouk, T. E. & Ramirez, G. Enhanced electrocatalytic hydrogen evolution reaction: supramolecular assemblies of metalloporphyrins on glassy carbon electrodes. Appl. Catal. B Environ. 188, 169–176 (2016).

    Article  CAS  Google Scholar 

  9. Thoi, V. S., Sun, Y., Long, J. R. & Chang, C. J. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. Chem. Soc. Rev. 42, 2388–2400 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Franco, F., Rettenmaier, C., Jeon, H. S. & Cuenya, B. R. Transition metal-based catalysts for the electrochemical CO2 reduction: from atoms and molecules to nanostructured materials. Chem. Soc. Rev. 49, 6884–6946 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Manbeck, G. F. & Fujita, E. A review of iron and cobalt porphyrins, phthalocyanines and related complexes for electrochemical and photochemical reduction of carbon dioxide. J. Porphyr. Phthalocyanines 19, 45–64 (2015).

    Article  CAS  Google Scholar 

  12. Zagal, J. H., Griveau, S., Silva, J. F., Nyokong, T. & Bedioui, F. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord. Chem. Rev. 254, 2755–2791 (2010).

    Article  CAS  Google Scholar 

  13. Sun, L., Reddu, V., Fisher, A. C. & Wang, X. Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 13, 374–403 (2020).

    Article  CAS  Google Scholar 

  14. Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, Y. & McCrory, C. C. L. Modulating the electrocatalytic mechanism of selective CO2 reduction by cobalt phthalocyanine through polymer coordination and encapsulation. Nat. Commun. 10, 1683 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhanaidarova, A., Jones, S. C., Despagnet-Ayoub, E., Pimentel, B. R. & Kubiak, C. P. Re(tBu-bpy)(CO)3Cl supported on multi-walled carbon nanotubes selectively reduces CO2 in water. J. Am. Chem. Soc. 141, 17270–17277 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Yao, S. A. et al. Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using “Smart” electrodes. J. Am. Chem. Soc. 134, 15632–15635 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Hu, X.-M., Rǿnne, M. H., Pedersen, S. U., Skrydstrup, T. & Daasbjerg, K. Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem. Int. Ed. Engl. 56, 6468–6472 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, W., Lai, W. & Cao, R. Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 117, 3717–3797 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Collman, J. P. et al. A cytochrome c oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux. Science 315, 1565–1568 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song, E., Shi, C. & Anson, F. C. Comparison of the behavior of several cobalt porphyrins as electrocatalysts for the reduction of O2 at graphite electrodes. Langmuir 14, 4315–4321 (1998).

    Article  CAS  Google Scholar 

  23. Dey, S. et al. Molecular electrocatalysts for the oxygen reduction reaction. Nat. Rev. Chem. 1, 0098 (2017).

    Article  CAS  Google Scholar 

  24. Rigsby, M. L., Wasylenko, D. J., Pegis, M. L. & Mayer, J. M. Medium effects are as important as catalyst design for selectivity in electrocatalytic oxygen reduction by iron–porphyrin complexes. J. Am. Chem. Soc. 137, 4296–4299 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Jasinski, R. A new fuel cell catalyst. Nature 201, 1212–1213 (1964).

    Article  CAS  Google Scholar 

  26. Morozan, A., Campidelli, S., Filoramo, A., Jousselme, B. & Palacin, S. Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction. Carbon 49, 4839–4847 (2011).

    Article  CAS  Google Scholar 

  27. Birdja, Y. Y. et al. Effects of substrate and polymer encapsulation on CO2 electroreduction by immobilized indium(III) protoporphyrin. ACS Catal. 8, 4420–4428 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ge, A. et al. Heterogenized molecular catalysts: vibrational sum-frequency spectroscopic, electrochemical, and theoretical investigations. Acc. Chem. Res. 52, 1289–1300 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Jackson, M. N. & Surendranath, Y. Molecular control of heterogeneous electrocatalysis through graphite conjugation. Acc. Chem. Res. 52, 3432–3441 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Costentin, C., Dridi, H. & Savéant, J. M. Molecular catalysis of O2 reduction by iron porphyrins in water: heterogeneous versus homogeneous pathways. J. Am. Chem. Soc. 137, 13535–13544 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Kaminsky, C. J., Wright, J. & Surendranath, Y. Graphite-conjugation enhances porphyrin electrocatalysis. ACS Catal. 9, 3667–3671 (2019).

    Article  CAS  Google Scholar 

  32. Wu, Y., Liang, Y. & Wang, H. Heterogeneous molecular catalysts of metal phthalocyanines for electrochemical CO2 reduction reactions. Acc. Chem. Res. 54, 3149–3159 (2021).

    Article  CAS  Google Scholar 

  33. Wu, Y., Hu, G., Rooney, C. L., Brudvig, G. W. & Wang, H. Heterogeneous nature of electrocatalytic CO/CO2 reduction by cobalt phthalocyanines. ChemSusChem 13, 6296–6299 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Zeng, J. S., Corbin, N., Williams, K. & Manthiram, K. Kinetic analysis on the role of bicarbonate in carbon dioxide electroreduction at immobilized cobalt phthalocyanine. ACS Catal. 10, 4326–4336 (2020).

    Article  CAS  Google Scholar 

  35. Clark, M. L. et al. CO2 reduction catalysts on gold electrode surfaces influenced by large electric fields. J. Am. Chem. Soc. 140, 17643–17655 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Gileadi, E. Physical Electrochemistry: Fundamentals, Techniques and Applications (Wiley-VCH, 2011).

  37. Bard, A. J. Electrochemical Methods: Fundamentals and Applications (Wiley, 2001).

  38. Bockris, J. O’M., Reddy, A. K. N. & Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics 2nd edn (Kluwer Academic Publishers, 2002).

  39. Ryu, J. & Surendranath, Y. Tracking electrical fields at the Pt/H2O interface during hydrogen catalysis. J. Am. Chem. Soc. 141, 15524–15531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oklejas, V., Sjostrom, C. & Harris, J. M. Surface-enhanced Raman scattering based vibrational Stark effect as a spatial probe of interfacial electric fields in the diffuse double layer. J. Phys. Chem. B 107, 7788–7794 (2003).

    Article  CAS  Google Scholar 

  41. Ge, A. et al. Interfacial structure and electric field probed by in situ electrochemical vibrational Stark effect spectroscopy and computational modeling. J. Phys. Chem. C 121, 18674–18682 (2017).

    Article  CAS  Google Scholar 

  42. Favaro, M. et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 7, 12695 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fried, S. D., Bagchi, S. & Boxer, S. G. Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science 346, 1510–1514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, C. T. et al. Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase. J. Am. Chem. Soc. 136, 10349–10360 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shaik, S., Mandal, D. & Ramanan, R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 8, 1091–1098 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Warburton, R. E. et al. Interfacial field-driven proton-coupled electron transfer at graphite-conjugated organic acids. J. Am. Chem. Soc. 142, 20855–20864 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Wesley, T. S., Román-Leshkov, Y. & Surendranath, Y. Spontaneous electric fields play a key role in thermochemical catalysis at metal−liquid interfaces. ACS Cent. Sci. 7, 1045–1055 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gorin, C. F., Beh, E. S., Bui, Q. M., Dick, G. R. & Kanan, M. W. Interfacial electric field effects on a carbene reaction catalyzed by Rh porphyrins. J. Am. Chem. Soc. 135, 11257–11265 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Azcarate, I., Costentin, C., Robert, M. & Savéant, J.-M. Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion. J. Am. Chem. Soc. 138, 16639–16644 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Lau, V. M., Gorin, C. F. & Kanan, M. W. Electrostatic control of regioselectivity via ion pairing in a Au(I)-catalyzed rearrangement. Chem. Sci. 5, 4975–4979 (2014).

    Article  CAS  Google Scholar 

  51. Aragonès, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016).

    Article  PubMed  CAS  Google Scholar 

  52. Kang, K. et al. Installation of internal electric fields by non-redox active cations in transition metal complexes. Chem. Sci. 10, 10135–10142 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chantarojsiri, T., Ziller, J. W. & Yang, J. Y. Incorporation of redox-inactive cations promotes iron catalyzed aerobic C-H oxidation at mild potentials. Chem. Sci. 9, 2567–2574 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jackson, M. N. et al. Strong electronic coupling of molecular sites to graphitic electrodes via pyrazine conjugation. J. Am. Chem. Soc. 140, 1004–1010 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Jackson, M. N., Kaminsky, C. J., Oh, S., Melville, J. F. & Surendranath, Y. Graphite conjugation eliminates redox intermediates in molecular electrocatalysis. J. Am. Chem. Soc. 141, 14160–14167 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lennox, J. C. & Murray, R. W. Chemically modified electrodes. 10. Electron spectroscopy for chemical analysis and alternating current voltammetry of glassy carbon-bound tetra(aminophenyl)porphyrins. J. Am. Chem. Soc. 100, 3710–3714 (1978).

    Article  CAS  Google Scholar 

  57. Rocklin, R. D. & Murray, R. W. Chemically modified carbon electrodes: Part XVII. Metallation of immobilized tetra(aminophenyl)porphyrin with manganese, iron, cobalt, nickel, copper and zinc, and electrochemistry of diprotonated tetraphenylporphyrin. J. Electroanal. Chem. 100, 271–282 (1979).

    Article  CAS  Google Scholar 

  58. Jester, C. P., Rocklin, R. D. & Murray, R. W. Electron transfer and axial coordination reactions of cobalt tetra(aminophenyl)porphyrins covalently bonded to carbon electrodes. J. Electrochem. Soc. 127, 1979–1985 (1980).

    Article  CAS  Google Scholar 

  59. Arrigo, R. et al. Tuning the acid/base properties of nanocarbons by functionalization via amination. J. Am. Chem. Soc. 132, 9616–9630 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Katrib, A. & El-Egaby, M. S. The X-ray photoelectron spectroscopy of the 5-hydroxy-6-methyl-3,4-pyridinium dimethanol hexachloroplatinate(IV). Inorg. Chim. Acta 36, L405–L406 (1979).

    Article  CAS  Google Scholar 

  61. Karweik, D. H. & Winograd, N. Nitrogen charge distributions in free-base porphyrins, metalloporphyrins, and their reduced analogs observed by X-ray photoelectron spectroscopy. Inorg. Chem. 15, 2336–2342 (1976).

    Article  CAS  Google Scholar 

  62. Izutsu, K. Electrochemistry in Nonaqueous Solutions 2nd edn (Wiley VCH, 2009).

  63. Savéant, J.-M. & Costentin, C. Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry 2nd edn, 209–213, 251–297 (John Wiley & Sons, 2019).

  64. Rountree, E. S., McCarthy, B. D., Eisenhart, T. T. & Dempsey, J. L. Evaluation of homogeneous electrocatalysts by cyclic voltammetry. Inorg. Chem. 53, 9983–10002 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Roberts, J. A. S. & Bullock, R. M. Direct determination of equilibrium potentials for hydrogen oxidation/production by open circuit potential measurements in acetonitrile. Inorg. Chem. 52, 3823–3835 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Appel, A. M. & Helm, M. L. Determining the overpotential for a molecular electrocatalyst. ACS Catal. 4, 630–633 (2014).

    Article  CAS  Google Scholar 

  67. de Groot, M. T. & Koper, M. T. M. Redox transitions of chromium, manganese, iron, cobalt and nickel protoporphyrins in aqueous solution. Phys. Chem. Chem. Phys. 10, 1023–1031 (2008).

    Article  PubMed  Google Scholar 

  68. Sullivan, M. G. et al. Electrochemically modified glassy carbon for capacitor electrodes characterization of thick anodic layers by cyclic voltammetry, differential electrochemical mass spectrometry, spectroscopic ellipsometry, X‐ray photoelectron spectroscopy, FTIR, and AFM. J. Electrochem. Soc. 147, 2636–2643 (2000).

    Article  CAS  Google Scholar 

  69. Atoguchi, T., Aramata, A., Kazusaka, A. & Enyo, M. Cobalt(II)–tetraphenylporphyrin–pyridine complex fixed on a glassy carbon electrode and its prominent catalytic activity for reduction of carbon dioxide. J. Chem. Soc. Chem. Commun. 156–157 (1991).

  70. Atoguchi, T., Aramata, A., Kazusaka, A. & Enyo, M. Electrocatalytic activity of CoII TPP-pyridine complex modified carbon electrode for CO2 reduction. J. Electroanal. Chem. 318, 309–320 (1991).

    Article  CAS  Google Scholar 

  71. Beiler, A. M., Khusnutdinova, D., Wadsworth, B. L. & Moore, G. F. Cobalt porphyrin–polypyridyl surface coatings for photoelectrosynthetic hydrogen production. Inorg. Chem. 56, 12178–12185 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Jackson, M. N. & Surendranath, Y. Donor-dependent kinetics of interfacial proton-coupled electron transfer. J. Am. Chem. Soc. 138, 3228–3234 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Fletcher, S. Tafel slopes from first principles. J. Solid State Electrochem. 13, 537–549 (2009).

    Article  CAS  Google Scholar 

  74. Costentin, C., Robert, M., Savéant, J.-M. & Teillout, A.-M. Concerted proton-coupled electron transfers in aquo/hydroxo/oxo metal complexes: electrochemistry of [OsII(bpy)2py(OH2)]2+ in water. Proc. Natl Acad. Sci. USA 106, 11829–11836 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Costentin, C., Robert, M. & Savéant, J.-M. Concerted proton-electron transfers: electrochemical and related approaches. Acc. Chem. Res. 43, 1019–1029 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Tyburski, R., Liu, T., Glover, S. D. & Hammarström, L. Proton-coupled electron transfer guidelines, fair and square. J. Am. Chem. Soc. 143, 560–576 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Irebo, T., Zhang, M.-T., Markle, T. F., Scott, A. M. & Hammaström, L. Spanning four mechanistic regions of intramolecular proton-coupled electron transfer in a Ru(bpy)32+–tyrosine complex. J. Am. Chem. Soc. 134, 16247–16254 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Fukushima, T., Drisdell, W., Yano, J. & Surendranath, Y. Graphite-conjugated pyrazines as molecularly tunable heterogeneous electrocatalysts. J. Am. Chem. Soc. 137, 10926–10929 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Oh, S., Gallagher, J. R., Miller, J. T. & Surendranath, Y. Graphite-conjugated rhenium catalysts for carbon dioxide reduction. J. Am. Chem. Soc. 138, 1820–1823 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Jackson, M. N., Pegis, M. L. & Surendranath, Y. Graphite-conjugated acids reveal a molecular framework for proton-coupled electron transfer at electrode surfaces. ACS Cent. Sci. 5, 831–841 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schmickler, W. & Santos, E. Interfacial Electrochemistry 51–65, 145–175 (Springer, 2010).

  82. Pegis, M. L. et al. Homogenous electrocatalytic oxygen reduction rates correlate with reaction overpotential in acidic organic solutions. ACS Cent. Sci. 2, 850–856 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Costentin, C. & Savéant, J.-M. Towards an intelligent design of molecular electrocatalysts. Nat. Rev. Chem. 1, 0087 (2017).

    Article  CAS  Google Scholar 

  84. Costentin, C., Drouet, S., Robert, M. & Savéant, J.-M. Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. cyclic voltammetry and preparative-scale electrolysis. J. Am. Chem. Soc. 134, 11235–11242 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Hu, X., Brunschwig, B. S. & Peters, J. C. Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. J. Am. Chem. Soc. 129, 8988–8998 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Wakerley, D. W. & Reisner, E. Development and understanding of cobaloxime activity through electrochemical molecular catalyst screening. Phys. Chem. Chem. Phys. 16, 5739–5746 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Pegis, M. L., Wise, C. F., Koronkiewicz, B. & Mayer, J. M. Identifying and breaking scaling relations in molecular catalysis of electrochemical reactions. J. Am. Chem. Soc. 139, 11000–11003 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Klug, C. M., Cardenas, A. J. P., Bullock, R. M., O’Hagan, M. & Wiedner, E. S. Reversing the tradeoff between rate and overpotential in molecular electrocatalysts for H2 production. ACS Catal. 8, 3286–3296 (2018).

    Article  CAS  Google Scholar 

  89. Zagal, J. H. & Koper, M. T. M. Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 55, 14510–14521 (2016).

    Article  CAS  Google Scholar 

  90. Zagal, J. H., Gullpi, M., Isaacs, M., Cardenas-Jiron, G. & Aguirre, M. J. Linear versus volcano correlations between electrocatalytic activity and redox and electronic properties of metallophthalocyanines. Electrochim. Acta 44, 1349–1357 (1998).

    Article  CAS  Google Scholar 

  91. Linares-Flores, C., Espinoza-Vergara, E., Zagal, J. H. & Arraria-Perez, R. Reactivity trends of Fe phthalocyanines confined on graphite electrodes in terms of donor-acceptor intermolecular hardness: linear versus volcano correlations. Chem. Phys. Lett. 614, 176–180 (2014).

    Article  CAS  Google Scholar 

  92. Bedioui, F. et al. Tuning the redox properties of metalloporphyrin- and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols. Phys. Chem. Chem. Phys. 9, 3383–3396 (2006).

    Article  CAS  Google Scholar 

  93. Birdja, Y. Y., Shen, J. & Koper, M. T. M. Influence of the metal center of metalloprotoporphyrins on the electrocatalytic CO2 reduction to formic acid. Catal. Today 288, 37–47 (2017).

    Article  CAS  Google Scholar 

  94. Zhu, M. et al. Inductive and electrostatic effects on immobilized cobalt porphyrins for electrocatalytic CO2 reduction. Catal. Sci. Technol. 9, 974–980 (2019).

    Article  CAS  Google Scholar 

  95. Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  PubMed  CAS  Google Scholar 

  97. Greeley, J. Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu. Rev. Chem. Biomol. Eng. 7, 605–635 (2016).

    Article  PubMed  Google Scholar 

  98. Quaino, P., Juarez, F., Santos, E. & Schmickler, W. Volcano plots in hydrogen electrocatalysis – uses and abuses. Beilstein J. Nanotechnol. 5, 846–854 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Alabugin, O. Jung, A. Chu, T. Wesley, N. Lewis, M. Jackson, M. Pegis, P. Smith and C. Costentin for helpful discussions. This research was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under award number DE-SC0020973. C.J.K. and S.W. are supported by the National Science Foundation Graduate Research Fellowship under grant no. 1122374. This research used the Inner Shell Spectroscopy 8-ID beamline of the National Synchrotron Light Source II, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under contract no. DE-SC0012704. This work made use of Shared Experimental Facilities supported in part by the MRSEC Program of the National Science Foundation under award no. DMR-1419807. Support for ICP-MS instrumentation was also provided by a core center grant P30-ES002109 from the National Institute of Environmental Health Sciences, National Institutes of Health. Y.S. acknowledges the Sloan Foundation, Research Corporation for Science Advancement (Cottrell Scholar) and the Canadian Institute for Advanced Research (CIFAR Azrieli Global Scholar).

Author information

Authors and Affiliations

Authors

Contributions

C.J.K. and Y.S. conceived the research and developed experiments. C.J.K. and S.W. conducted all experiments. J.W. processed and analysed X-ray absorption data. C.J.K. and Y.S. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Yogesh Surendranath.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Peer review information

Nature Catalysis thanks S. Tilley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Methods, Tables 1–2, Figs. 1–25 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaminsky, C.J., Weng, S., Wright, J. et al. Adsorbed cobalt porphyrins act like metal surfaces in electrocatalysis. Nat Catal 5, 430–442 (2022). https://doi.org/10.1038/s41929-022-00791-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00791-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing