Skip to main content

Advertisement

Log in

Optimization Production Scheduling of Underground Backfilling Mining Based on NSGA-II

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

In the green backfilling mining of underground coal mines, gangue in a coal seam is used to replace and fill goafs. However, the gas drainage time changes in the amount of gangue output and order in the extraction sequence of stope blocks, thereby changing the production output. A multi-objective integer programming model was proposed to solve this based on an improved non-dominated sorting genetic algorithm. The results show a feasible gangue filling rate can be found and the extraction sequence for a long-term planning time is optimized. It increases the planned annual output by 26% and reduces equipment idle time.

Highlights

  • Solving the change of production scheduling caused by "under three", gas drainage, etc.

  • Establishing a method to find suitable gangue filling rate in backfilling mining.

  • Improving the mixed population coding in the NGSA-II for solving production scheduling.

  • Adding an upper layer with greedy strategy to control the Pareto equilibrium frontier.

  • Establishing a constraint to limit deadlocks in production scheduling solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang J, Zhang Q, Spearing AS, Miao X, Guo S, Sun Q (2017) Green coal mining technique integrating mining-dressing-gas draining-backfilling-mining. Int J Min Sci Technol 27(1):17–27. https://doi.org/10.1016/j.ijmst.2016.11.014 (sI: Special Issue on Ground Control in Mining in 2016)

  2. Zhang X, Lin J (2017) Investigation of hydraulic-mechanical properties of paste backfill containing coal gangue-fly ash and its application in an underground coal mine. Energies 9(10). https://doi.org/10.3390/en10091309

  3. Sotoudeh F, Nehring M, Kizil M, Knights P, Mousavi A (2020) Production scheduling optimisation for sublevel stoping mines using mathematical programming: A review of literature and future directions. Resour Policy 68(July):101809. https://doi.org/10.1016/j.resourpol.2020.101809

    Article  Google Scholar 

  4. Newman AM, Rubio E, Caro R, Weintraub A, Eurek K (2010) A review of operations research in mine planning. Interfaces 40(3):222–245. https://doi.org/10.1287/inte.1090.0492

    Article  Google Scholar 

  5. Yin Y, Zhao T, Zhang Y, Tan Y, Qiu Y, Taheri A, Jing Y (2019) An innovative method for placement of gangue backfilling material in steep underground coal mines. Minerals 9(2):107

    Article  Google Scholar 

  6. Lamghari A, Dimitrakopoulos R (2016) Network-flow based algorithms for scheduling production in multi-processor open-pit mines accounting for metal uncertainty. Eur J Oper Res 250(1):273–290. https://doi.org/10.1016/j.ejor.2015.08.051

    Article  MathSciNet  MATH  Google Scholar 

  7. Letelier OR, Espinoza D, Goycoolea M, Moreno E, Muñoz G (2020) Production scheduling for strategic open pit mine planning: A mixed-integer programming approach. Oper Res 68(5):1425–1444. https://doi.org/10.1287/opre.2019.1965

    Article  MathSciNet  MATH  Google Scholar 

  8. Fathollahzadeh K, Asad MWA, Mardaneh E, Cigla M (2021) Review of solution methodologies for open pit mine production scheduling problem. Int J Min Reclam Environ 35(8):564–599. https://doi.org/10.1080/17480930.2021.1888395

    Article  Google Scholar 

  9. Sullivan DO, Newman A (2015) Optimization-based heuristics for underground mine scheduling. Eur J Oper Res 241(1):248–259. https://doi.org/10.1016/j.ejor.2014.08.020

  10. Andrea B, Akshay C, Alexandra N, Marcos G (2021a) Barrick’s turquoise ridge gold mine optimizes underground production scheduling operations. INFORMS J Appl Anal 51(2):106–118. https://doi.org/10.1287/inte.2020.1027

    Article  Google Scholar 

  11. Cinna S, Marco S, Juergen Z (2021) Solution procedures for block selection and sequencing in flat-bedded potash underground mines. OR Spectr 43(2):409–440. https://doi.org/10.1007/s00291-021-00618-z

    Article  MATH  Google Scholar 

  12. Shabani-Naeeni F, Ghasemy Yaghin R (2021) Integrating data visibility decision in a multi-objective procurement transport planning under risk: A modified NSGA-II. Appl Soft Comput 107:107406. https://doi.org/10.1016/j.asoc.2021.107406

    Article  Google Scholar 

  13. Andrea B, Akshay C, Alexandra N, Marcos G, Raphael G (2021b) Barrick s turquoise ridge gold mine optimizes underground production scheduling operations. Interfaces 51(2):106–118. https://doi.org/10.1287/INTE.2020.1063

    Article  Google Scholar 

  14. Munoz G, Espinoza D, Goycoolea M, Moreno E, Queyranne M, Letelier OR (2018) A study of the bienstock-zuckerberg algorithm: applications in mining and resource constrained project scheduling. Comput Optim Appl 69:501–534. https://doi.org/10.1007/s10589-017-9946-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Nesbitt P, Blake LR, Lamas P, Goycoolea M, Pagnoncelli BK, Newman A, Brickey A (2021) Underground mine scheduling under uncertainty. Eur J Oper Res 294(1):340–352

    Article  Google Scholar 

  16. Sullivan DO, Newman A (2014) Extraction and backfill scheduling in a complex underground mine. Interfaces 44(October):204–221

    Article  Google Scholar 

  17. Åstrand M, Johansson M, Zanarini A (2020) Underground mine scheduling of mobile machines using Constraint Programming and Large Neighborhood Search. Comput Oper Res 123. https://doi.org/10.1016/j.cor.2020.105036

  18. Åstrand M, Johansson M, Greberg J (2018) Underground mine scheduling modelled as a flow shop: a review of relevant work and future challenges. J South Afr Inst Min Metall 118(12):1265–1276

    Article  Google Scholar 

  19. Huang S, Li G, Ben-Awuah E, Afum BO, Hu N (2020) A robust mixed integer linear programming framework for underground cut-and-fill mining production scheduling. Int J Min Reclam Environ 34(6):397–414. https://doi.org/10.1080/17480930.2019.1576576

    Article  Google Scholar 

  20. Carpentier S, Gamache M, Dimitrakopoulos R (2016) Underground long-term mine production scheduling with integrated geological risk management. Trans Inst Min Metall Sect A Min Technol 125(2):93–102. https://doi.org/10.1179/1743286315Y.0000000026

    Article  Google Scholar 

  21. Kopacz M, Malinowski L, Kaczmarzewski S, Kamiński P (2020) Optimizing mining production plan as a trade-off betweeresources utilization and economic targets in underground coal mines. Gospodarka Surowcami Mineralnymi Miner Resour Manag 36(4):49–74. https://doi.org/10.24425/gsm.2020.133948

  22. Hou J, Li G, Hu N, Wang H (2019) Simultaneous integrated optimization for underground mine planning: Application and risk analysis of geological uncertainty in a gold deposit. Gospodarka Surowcami Mineralnymi Miner Resour Manag 35(2):153–174. https://doi.org/10.24425/gsm.2019.128518

  23. Hou J, Li G, Wang H, Hu N (2020) Genetic algorithm to simultaneously optimise stope sequencing and equipment dispatching in underground short-term mine planning under time uncertainty. Int J Min Reclam Environ 34(5):307–325. https://doi.org/10.1080/17480930.2019.1584952

    Article  Google Scholar 

  24. Ngatchou P, Zarei A, A El-Sharkawi M (2005) Pareto multi objective optimization. In: Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems, p 84–91. https://doi.org/10.1109/ISAP.2005.1599245

  25. Wang H, Tenorio V, Li G, Hou J, Hu N (2020) Optimization of trackless equipment scheduling in underground mines using genetic algorithms. Min Metall Explor 37(5):1531–1544. https://doi.org/10.1007/s42461-020-00285-8

    Article  Google Scholar 

  26. Bharti PS, Maheshwari S, Sharma C (2012) Multi-objective optimization of electric-discharge machining process using controlled elitist nsga-ii. J Mech Sci Technol 26(6):1875–1883

    Article  Google Scholar 

  27. Foroughi S, Hamidi JK, Monjezi M, Nehring M (2019) The integrated optimization of underground stope layout designing and production scheduling incorporating a non-dominated sorting genetic algorithm (NSGA-II). Resour Policy 63(May):101408. https://doi.org/10.1016/j.resourpol.2019.101408

    Article  Google Scholar 

  28. Yu S, Zheng S, Gao S, Yang J (2017) A multi-objective decision model for investment in energy savings and emission reductions in coal mining. Eur J Oper Res 260(1):335–347. https://doi.org/10.1016/j.ejor.2016.12.023

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang X, Gu X, Liu Z, Wang Q, Xu X, Zheng M (2018) Production process optimization of metal mines considering economic benefit and resource efficiency using an nsga-ii model. Processes 6(11). https://doi.org/10.3390/pr6110228

  30. Li N, Feng S, Ye H, Wang Q, Jia M, Wang L, Zhao S, Chen D (2021) Dispatch optimization model for haulage equipment between stopes based on mine short term resource planning. Metals 11(11). https://doi.org/10.3390/met11111848

  31. Gu X, Wang X, Liu Z, Zha W, Xu X, Zheng M (2020) A multi-objective optimization model using improved NSGA-II for optimizing metal mines production process. IEEE Access 8:28847–28858. https://doi.org/10.1109/ACCESS.2020.2972018

    Article  Google Scholar 

  32. Whittle G (2009) Misguided objectives that destroy value. In: Proceedings orebody modelling and strategic mine planning, p 97–101

Download references

Acknowledgements

This work was supported by the Project of the National Natural Science Foundation of China (no. 51204185, 51974295) and the State Key Development Program for Basic Research of Xuzhou City (No. KC17073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Bao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Wang, Y., Zhao, L. et al. Optimization Production Scheduling of Underground Backfilling Mining Based on NSGA-II. Mining, Metallurgy & Exploration 39, 1521–1536 (2022). https://doi.org/10.1007/s42461-022-00606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-022-00606-z

Keywords

Navigation