Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From risk to chronicity: evolution of autoreactive B cell and antibody responses in rheumatoid arthritis

Abstract

The presence of disease-specific autoantibody responses and the efficacy of B cell-targeting therapies in rheumatoid arthritis (RA) indicate a pivotal role for B cells in disease pathogenesis. Important advances have shaped our understanding of the involvement of autoantibodies and autoreactive B cells in the disease process. In RA, autoantibodies target antigens with a variety of post-translational modifications such as carbamylation, acetylation and citrullination. B cell responses against citrullinated antigens generate anti-citrullinated protein antibodies (ACPAs), which are themselves modified in the variable domains by abundant N-linked glycans. Insights into the induction of autoreactive B cells against antigens with post-translational modifications and the development of autoantibody features such as isotype usage, epitope recognition, avidity and glycosylation reveal their relationship to particular RA risk factors and clinical phenotypes. Glycosylation of the ACPA variable domain, for example, seems to predict RA onset in ACPA+ healthy individuals, possibly because it affects B cell receptor signalling. Moreover, ACPA-expressing B cells show dynamic phenotypic changes and develop a continuously proliferative and activated phenotype that can persist in patients who are in drug-induced clinical remission. Together, these findings can be integrated into a conceptual framework of immunological autoreactivity in RA, delineating how it develops and persists and why disease activity recurs when therapy is tapered or stopped.

Key points

  • Anti-modified-protein antibodies exhibit broad cross-reactivity towards multiple post-translational modifications.

  • Compared with other antibodies, anti-citrullinated protein antibodies (ACPAs) are characterized by the presence of high numbers of N-linked glycans in the variable domain.

  • Generation of the amino acid sequences that are required for N-linked glycosylation is mediated by somatic hypermutation and associated with the presence of HLA-shared epitope alleles.

  • Generation of glycosylation sites occurs prior to the development of rheumatoid arthritis and likely provides a selective advantage to ACPA-expressing B cells.

  • ACPA-expressing B cells, unlike B cells directed against recall antigens, display an activated and proliferative phenotype in rheumatoid arthritis, suggesting that they undergo continuous antigenic triggering.

  • Even in patients in drug-induced clinical remission, ACPA-expressing B cells still display an activated, proliferative phenotype, indicating a lack of induction of immunological remission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Post-translational modifications and autoantibody cross-reactivity.
Fig. 2: Peripheral checkpoints controlling B cell activation.
Fig. 3: Potential induction of autoreactive B cells at mucosal sites and their possible contribution to rheumatoid arthritis.
Fig. 4: Development and structural features of ACPA V-domain glycosylation.
Fig. 5: Conceptual framework for autoreactive B cell activation and the maintenance of disease chronicity.

Similar content being viewed by others

References

  1. van der Helm-van Mil, A. H., Verpoort, K. N., Breedveld, F. C., Toes, R. E. & Huizinga, T. W. Antibodies to citrullinated proteins and differences in clinical progression of rheumatoid arthritis. Arthritis Res. Ther. 7, R949–R958 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Whiting, P. F. et al. Systematic review: accuracy of anti-citrullinated peptide antibodies for diagnosing rheumatoid arthritis. Ann. Intern. Med. 152, 456–464 (2010). W155-466.

    Article  PubMed  Google Scholar 

  3. Waaler, E. On the occurrence of a factor in human serum activating the specific agglutination of sheep blood corpuscles. 1939. APMIS 115, 422–438 (2007). discussion 439.

    Article  PubMed  Google Scholar 

  4. Edelman, G. M., Kunkel, H. G. & Franklin, E. C. Interaction of the rheumatoid factor with antigen-antibody complexes and aggregated gamma globulin. J. Exp. Med. 108, 105–120 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fehr, T. et al. Role of repetitive antigen patterns for induction of antibodies against antibodies. J. Exp. Med. 185, 1785–1792 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Newkirk, M. M. Rheumatoid factors: host resistance or autoimmunity? Clin. Immunol. 104, 1–13 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Lu, D. R. et al. T cell-dependent affinity maturation and innate immune pathways differentially drive autoreactive B cell responses in rheumatoid arthritis. Arthritis Rheumatol. 70, 1732–1744 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Falkenburg, W. J. J. et al. Identification of clinically and pathophysiologically relevant rheumatoid factor epitopes by engineered IgG Targets. Arthritis Rheumatol. 72, 2005–2016 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Vaughan, J. H. 1992 Joseph J. Bunim Lecture. Pathogenetic concepts and origins of rheumatoid factor in rheumatoid arthritis. Arthritis Rheum. 36, 1–6 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Willemze, A., Trouw, L. A., Toes, R. E. & Huizinga, T. W. The influence of ACPA status and characteristics on the course of RA. Nat. Rev. Rheumatol. 8, 144–152 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Nienhuis, R. L. & Mandema, E. A new serum factor in patients with rheumatoid arthritis; the antiperinuclear factor. Ann. Rheum. Dis. 23, 302–305 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schellekens, G. A., de Jong, B. A., van den Hoogen, F. H., van de Putte, L. B. & van Venrooij, W. J. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J. Clin. Invest. 101, 273–281 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Girbal-Neuhauser, E. et al. The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro)filaggrin by deimination of arginine residues. J. Immunol. 162, 585–594 (1999).

    CAS  PubMed  Google Scholar 

  14. Aletaha, D. et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62, 2569–2581 (2010).

    Article  PubMed  Google Scholar 

  15. Dekkers, J. S. et al. Breach of autoreactive B cell tolerance by post-translationally modified proteins. Ann. Rheum. Dis. 76, 1449–1457 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Ioan-Facsinay, A. et al. Anti-cyclic citrullinated peptide antibodies are a collection of anti-citrullinated protein antibodies and contain overlapping and non-overlapping reactivities. Ann. Rheum. Dis. 70, 188–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Kampstra, A. S. B. et al. Different classes of anti-modified protein antibodies are induced on exposure to antigens expressing only one type of modification. Ann. Rheum. Dis. 78, 908–916 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Kissel, T. et al. Antibodies and B cells recognising citrullinated proteins display a broad cross-reactivity towards other post-translational modifications. Ann. Rheum. Dis. 79, 472–480 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Sahlstrom, P. et al. Different hierarchies of anti-modified protein autoantibody reactivities in rheumatoid arthritis. Arthritis Rheumatol. 72, 1643–1657 (2020).

    Article  PubMed  CAS  Google Scholar 

  20. Steen, J. et al. Recognition of amino acid motifs, rather than specific proteins, by human plasma cell-derived monoclonal antibodies to posttranslationally modified proteins in rheumatoid arthritis. Arthritis Rheumatol. 71, 196–209 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hensvold, A. H. et al. How well do ACPA discriminate and predict RA in the general population: a study based on 12 590 population-representative Swedish twins. Ann. Rheum. Dis. 76, 119–125 (2017).

    Article  PubMed  Google Scholar 

  22. Nielen, M. M. et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 50, 380–386 (2004).

    Article  PubMed  Google Scholar 

  23. Rantapaa-Dahlqvist, S. et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 48, 2741–2749 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. Tasliyurt, T. et al. The frequency of antibodies against cyclic citrullinated peptides and rheumatoid factor in healthy population: a field study of rheumatoid arthritis from northern Turkey. Rheumatol. Int. 33, 939–942 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Terao, C. et al. Effects of smoking and shared epitope on the production of anti-citrullinated peptide antibody in a Japanese adult population. Arthritis Care Res. 66, 1818–1827 (2014).

    Article  CAS  Google Scholar 

  26. van Zanten, A. et al. Presence of anticitrullinated protein antibodies in a large population-based cohort from the Netherlands. Ann. Rheum. Dis. 76, 1184–1190 (2017).

    Article  PubMed  CAS  Google Scholar 

  27. Tanner, S. et al. A prospective study of the development of inflammatory arthritis in the family members of indigenous North American people with rheumatoid arthritis. Arthritis Rheumatol. 71, 1494–1503 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Bemis, E. A. et al. Factors associated with progression to inflammatory arthritis in first-degree relatives of individuals with RA following autoantibody positive screening in a non-clinical setting. Ann. Rheum. Dis. 80, 154–161 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. van de Stadt, L. A. et al. The extent of the anti-citrullinated protein antibody repertoire is associated with arthritis development in patients with seropositive arthralgia. Ann. Rheum. Dis. 70, 128–133 (2011).

    Article  PubMed  CAS  Google Scholar 

  30. van der Woude, D. et al. Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Ann. Rheum. Dis. 69, 1554–1561 (2010).

    Article  PubMed  CAS  Google Scholar 

  31. Shi, J. et al. Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. Proc. Natl Acad. Sci. USA 108, 17372–17377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lloyd, K. A. et al. Differential ACPA binding to nuclear antigens reveals a PAD-independent pathway and a distinct subset of acetylation cross-reactive autoantibodies in rheumatoid arthritis. Front. Immunol. 9, 3033 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Yang, X. J. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 32, 959–976 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Juarez, M. et al. Identification of novel antiacetylated vimentin antibodies in patients with early inflammatory arthritis. Ann. Rheum. Dis. 75, 1099–1107 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Figueiredo, C. P. et al. Antimodified protein antibody response pattern influences the risk for disease relapse in patients with rheumatoid arthritis tapering disease modifying antirheumatic drugs. Ann. Rheum. Dis. 76, 399–407 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Kongpachith, S. et al. Affinity maturation of the anti-citrullinated protein antibody paratope drives epitope spreading and polyreactivity in rheumatoid arthritis. Arthritis Rheumatol. 71, 507–517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nijjar, J. S. et al. The impact of autoantibodies against citrullinated, carbamylated, and acetylated peptides on radiographic progression in patients with new-onset rheumatoid arthritis: an observational cohort study. Lancet Rheumatol. 3, e284–e293 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ge, C. & Holmdahl, R. The structure, specificity and function of anti-citrullinated protein antibodies. Nat. Rev. Rheumatol. 15, 503–508 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Ge, C. et al. Structural basis of cross-reactivity of anti-citrullinated protein antibodies. Arthritis Rheumatol. 71, 210–221 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Uysal, H. et al. Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis. J. Exp. Med. 206, 449–462 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reijm, S. et al. Cross-reactivity of IgM anti-modified protein antibodies in rheumatoid arthritis despite limited mutational load. Arthritis Res. Ther. 23, 230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lang, J. et al. B cells are exquisitely sensitive to central tolerance and receptor editing induced by ultralow affinity, membrane-bound antigen. J. Exp. Med. 184, 1685–1697 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Nemazee, D. Mechanisms of central tolerance for B cells. Nat. Rev. Immunol. 17, 281–294 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Halverson, R., Torres, R. M. & Pelanda, R. Receptor editing is the main mechanism of B cell tolerance toward membrane antigens. Nat. Immunol. 5, 645–650 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Meffre, E. & O’Connor, K. C. Impaired B-cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunol. Rev. 292, 90–101 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reijm, S., Kissel, T. & Toes, R. E. M. Checkpoints controlling the induction of B cell mediated autoimmunity in human autoimmune diseases. Eur. J. Immunol. 50, 1885–1894 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Heesters, B. A., Myers, R. C. & Carroll, M. C. Follicular dendritic cells: dynamic antigen libraries. Nat. Rev. Immunol. 14, 495–504 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Ansel, K. M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Nossal, G. J., Ada, G. L. & Austin, C. M. Antigens in immunity. IV. Cellular localization of 125-I- and 131-I-labelled flagella in lymph nodes. Aust. J. Exp. Biol. Med. Sci. 42, 311–330 (1964).

    Article  CAS  PubMed  Google Scholar 

  50. Carroll, M. C. The role of complement and complement receptors in induction and regulation of immunity. Annu. Rev. Immunol. 16, 545–568 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Cumpelik, A. et al. Dynamic regulation of B cell complement signaling is integral to germinal center responses. Nat. Immunol. 22, 757–768 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leadbetter, E. A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Elsner, R. A. & Shlomchik, M. J. Germinal center and extrafollicular B Cell responses in vaccination, immunity, and autoimmunity. Immunity 53, 1136–1150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chemin, K. et al. A novel HLA-DRB1*10:01-restricted T cell epitope from citrullinated type II collagen relevant to rheumatoid arthritis. Arthritis Rheumatol. 68, 1124–1135 (2016).

    CAS  PubMed  Google Scholar 

  55. Feitsma, A. L. et al. Identification of citrullinated vimentin peptides as T cell epitopes in HLA-DR4-positive patients with rheumatoid arthritis. Arthritis Rheum. 62, 117–125 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Pieper, J. et al. Memory T cells specific to citrullinated alpha-enolase are enriched in the rheumatic joint. J. Autoimmun. 92, 47–56 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Snir, O. et al. Identification and functional characterization of T cells reactive to citrullinated vimentin in HLA-DRB1*0401-positive humanized mice and rheumatoid arthritis patients. Arthritis Rheum. 63, 2873–2883 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McClain, M. T. et al. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat. Med. 11, 85–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Ruff, W. E. et al. Pathogenic autoreactive T and B cells cross-react with mimotopes expressed by a common human gut commensal to trigger autoimmunity. Cell Host Microbe 26, 100–113.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Greiling, T. M. et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aan2306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Qian, Y. et al. Cutting edge: Brazilian pemphigus foliaceus anti-desmoglein 1 autoantibodies cross-react with sand fly salivary LJM11 antigen. J. Immunol. 189, 1535–1539 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Lanz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Arentz-Hansen, H. et al. The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J. Exp. Med. 191, 603–612 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. van de Wal, Y. et al. Small intestinal T cells of celiac disease patients recognize a natural pepsin fragment of gliadin. Proc. Natl Acad. Sci. USA 95, 10050–10054, https://doi.org/10.1073/pnas.95.17.10050 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Parker, D. C. The carrier effect and T cell/B cell cooperation in the antibody response. J. Immunol. 191, 2025–2027 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. James, E. A. et al. Citrulline-specific Th1 cells are increased in rheumatoid arthritis and their frequency is influenced by disease duration and therapy. Arthritis Rheumatol. 66, 1712–1722 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Song, J. et al. Shared recognition of citrullinated tenascin-C peptides by T and B cells in rheumatoid arthritis. JCI Insight https://doi.org/10.1172/jci.insight.145217 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. van Heemst, J. et al. Crossreactivity to vinculin and microbes provides a molecular basis for HLA-based protection against rheumatoid arthritis. Nat. Commun. 6, 6681 (2015).

    Article  PubMed  CAS  Google Scholar 

  69. Bajic, G., Degn, S. E., Thiel, S. & Andersen, G. R. Complement activation, regulation, and molecular basis for complement-related diseases. EMBO J. 34, 2735–2757 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Holers, V. M. Complement and its receptors: new insights into human disease. Annu. Rev. Immunol. 32, 433–459 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Jiang, H., Cooper, B., Robey, F. A. & Gewurz, H. DNA binds and activates complement via residues 14-26 of the human C1q A chain. J. Biol. Chem. 267, 25597–25601 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Gerlag, D. M. et al. EULAR recommendations for terminology and research in individuals at risk of rheumatoid arthritis: report from the Study Group for Risk Factors for Rheumatoid Arthritis. Ann. Rheum. Dis. 71, 638–641 (2012).

    Article  PubMed  Google Scholar 

  73. Toes, R. E. M. & Raza, K. The autoimmune response as a potential target for tolerance induction before the development of rheumatoid arthritis. Lancet Rheumatol. 3, E214–E223 (2021).

    Article  Google Scholar 

  74. Karlson, E. W. & Deane, K. Environmental and gene-environment interactions and risk of rheumatoid arthritis. Rheum. Dis. Clin. North. Am. 38, 405–426 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Okada, Y., Eyre, S., Suzuki, A., Kochi, Y. & Yamamoto, K. Genetics of rheumatoid arthritis: 2018 status. Ann. Rheum. Dis. 78, 446–453 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Frisell, T., Saevarsdottir, S. & Askling, J. Family history of rheumatoid arthritis: an old concept with new developments. Nat. Rev. Rheumatol. 12, 335–343 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Hensvold, A. H. et al. Environmental and genetic factors in the development of anticitrullinated protein antibodies (ACPAs) and ACPA-positive rheumatoid arthritis: an epidemiological investigation in twins. Ann. Rheum. Dis. 74, 375–380 (2015).

    Article  PubMed  Google Scholar 

  78. van Heemst, J. et al. Protective effect of HLA-DRB1*13 alleles during specific phases in the development of ACPA-positive RA. Ann. Rheum. Dis. 75, 1891–1898 (2016).

    Article  PubMed  Google Scholar 

  79. Wouters, F. et al. Determining in which pre-arthritis stage HLA-shared epitope alleles and smoking exert their effect on the development of rheumatoid arthritis. Ann. Rheum. Dis. 81, 48–55 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Klareskog, L. et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 54, 38–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Makrygiannakis, D. et al. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann. Rheum. Dis. 67, 1488–1492 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Nesse, W. et al. The periodontium of periodontitis patients contains citrullinated proteins which may play a role in ACPA (anti-citrullinated protein antibody) formation. J. Clin. Periodontol. 39, 599–607 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, X. et al. Widespread protein lysine acetylation in gut microbiome and its alterations in patients with Crohn’s disease. Nat. Commun. 11, 4120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Holers, V. M. et al. Rheumatoid arthritis and the mucosal origins hypothesis: protection turns to destruction. Nat. Rev. Rheumatol. 14, 542–557 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. van Wesemael, T. J. et al. Smoking is associated with the concurrent presence of multiple autoantibodies in rheumatoid arthritis rather than with anti-citrullinated protein antibodies per se: a multicenter cohort study. Arthritis Res. Ther. 18, 285 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Regueiro, C. et al. A predominant involvement of the triple seropositive patients and others with rheumatoid factor in the association of smoking with rheumatoid arthritis. Sci. Rep. 10, 3355 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ioan-Facsinay, A. et al. Marked differences in fine specificity and isotype usage of the anti-citrullinated protein antibody in health and disease. Arthritis Rheum. 58, 3000–3008 (2008).

    Article  PubMed  Google Scholar 

  90. Mahdi, H. et al. Specific interaction between genotype, smoking and autoimmunity to citrullinated alpha-enolase in the etiology of rheumatoid arthritis. Nat. Genet. 41, 1319–1324 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. van der Woude, D. et al. Gene-environment interaction influences the reactivity of autoantibodies to citrullinated antigens in rheumatoid arthritis. Nat. Genet. 42, 814–816 (2010). author reply 816.

    Article  PubMed  CAS  Google Scholar 

  92. Verpoort, K. N. et al. Fine specificity of the anti-citrullinated protein antibody response is influenced by the shared epitope alleles. Arthritis Rheum. 56, 3949–3952 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Kissel, T. et al. On the presence of HLA-SE alleles and ACPA-IgG variable domain glycosylation in the phase preceding the development of rheumatoid arthritis. Ann. Rheum. Dis. 78, 1616–1620 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Kokkonen, H. et al. Antibodies of IgG, IgA and IgM isotypes against cyclic citrullinated peptide precede the development of rheumatoid arthritis. Arthritis Res. Ther. 13, R13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. van de Stadt, L. A. et al. Development of the anti-citrullinated protein antibody repertoire prior to the onset of rheumatoid arthritis. Arthritis Rheum. 63, 3226–3233 (2011).

    Article  PubMed  CAS  Google Scholar 

  96. Gan, R. W. et al. Anti-carbamylated protein antibodies are present prior to rheumatoid arthritis and are associated with its future diagnosis. J. Rheumatol. 42, 572–579 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sokolove, J. et al. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS One 7, e35296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Breedveld, A. C. et al. IgA immune complexes induce osteoclast-mediated bone resorption. Front. Immunol. 12, 651049 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. de Moel, E. C. et al. Baseline autoantibody profile in rheumatoid arthritis is associated with early treatment response but not long-term outcomes. Arthritis Res. Ther. 20, 33 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. van der Woude, D. et al. The ACPA isotype profile reflects long-term radiographic progression in rheumatoid arthritis. Ann. Rheum. Dis. 69, 1110–1116 (2010).

    Article  PubMed  CAS  Google Scholar 

  101. Wouters, F. et al. Do autoantibody-responses mature between presentation with arthralgia suspicious for progression to rheumatoid arthritis and development of clinically apparent inflammatory arthritis? A longitudinal serological study. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2020-218221 (2020).

    Article  PubMed  Google Scholar 

  102. Maschmeyer, P. et al. Immunological memory in rheumatic inflammation — a roadblock to tolerance induction. Nat. Rev. Rheumatol. 17, 291–305 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Rombouts, Y. et al. Extensive glycosylation of ACPA-IgG variable domains modulates binding to citrullinated antigens in rheumatoid arthritis. Ann. Rheum. Dis. 75, 578–585 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Hafkenscheid, L. et al. Structural analysis of variable domain glycosylation of anti-citrullinated protein antibodies in rheumatoid arthritis reveals the presence of highly sialylated glycans. Mol. Cell Proteom. 16, 278–287 (2017).

    Article  CAS  Google Scholar 

  105. van de Bovenkamp, F. S. et al. Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region. Proc. Natl Acad. Sci. USA 115, 1901–1906 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Vletter, E. M., Koning, M. T., Scherer, H. U., Veelken, H. & Toes, R. E. M. A comparison of immunoglobulin variable region N-linked glycosylation in healthy donors, autoimmune disease and lymphoma. Front. Immunol. 11, 241 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lloyd, K. A. et al. Variable domain N-linked glycosylation and negative surface charge are key features of monoclonal ACPA: implications for B-cell selection. Eur. J. Immunol. 48, 1030–1045 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Vergroesen, R. D. et al. B-cell receptor sequencing of anti-citrullinated protein antibody (ACPA) IgG-expressing B cells indicates a selective advantage for the introduction of N-glycosylation sites during somatic hypermutation. Ann. Rheum. Dis. 77, 956–958 (2018).

    PubMed  CAS  Google Scholar 

  109. Vergroesen, R. D. et al. N-glycosylation site analysis of citrullinated antigen-specific B-cell receptors indicates alternative selection pathways during autoreactive B-cell development. Front. Immunol. 10, 2092 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kaplan, H. A., Welply, J. K. & Lennarz, W. J. Oligosaccharyl transferase: the central enzyme in the pathway of glycoprotein assembly. Biochim. Biophys. Acta 906, 161–173 (1987).

    Article  CAS  PubMed  Google Scholar 

  111. Shakin-Eshleman, S. H., Spitalnik, S. L. & Kasturi, L. The amino acid at the X position of an Asn-X-Ser sequon is an important determinant of N-linked core-glycosylation efficiency. J. Biol. Chem. 271, 6363–6366 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Chuang, G. Y. et al. Removal of variable domain N-linked glycosylation as a means to improve the homogeneity of HIV-1 broadly neutralizing antibodies. MAbs 12, 1836719 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Wallick, S. C., Kabat, E. A. & Morrison, S. L. Glycosylation of a VH residue of a monoclonal antibody against alpha (1–6) dextran increases its affinity for antigen. J. Exp. Med. 168, 1099–1109 (1988).

    Article  CAS  PubMed  Google Scholar 

  114. Co, M. S. et al. Genetically engineered deglycosylation of the variable domain increases the affinity of an anti-CD33 monoclonal antibody. Mol. Immunol. 30, 1361–1367 (1993).

    Article  CAS  PubMed  Google Scholar 

  115. Khurana, S., Raghunathan, V. & Salunke, D. M. The variable domain glycosylation in a monoclonal antibody specific to GnRH modulates antigen binding. Biochem. Biophys. Res. Commun. 234, 465–469 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Leibiger, H., Wustner, D., Stigler, R. D. & Marx, U. Variable domain-linked oligosaccharides of a human monoclonal IgG: structure and influence on antigen binding. Biochem. J. 338, 529–538 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tachibana, H., Kim, J. Y. & Shirahata, S. Building high affinity human antibodies by altering the glycosylation on the light chain variable region in N-acetylglucosamine-supplemented hybridoma cultures. Cytotechnology 23, 151–159 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Koers, J. et al. Biased N-glycosylation site distribution and acquisition across the antibody V region during B cell maturation. J. Immunol. 202, 2220–2228 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Kissel, T. et al. Surface Ig variable domain glycosylation affects autoantigen binding and acts as threshold for human autoreactive B cell activation. Sci. Adv. 8, eabm1759 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. van de Bovenkamp, F. S. et al. Variable domain N-linked glycans acquired during antigen-specific immune responses can contribute to immunoglobulin G antibody stability. Front. Immunol. 9, 740 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Lefranc, M. P. IMGT, the International ImMunoGeneTics Information System. Cold Spring Harb. Protoc. 2011, 595–603 (2011).

    Article  PubMed  Google Scholar 

  122. Kempers, A. C. et al. The extensive glycosylation of the ACPA variable domain observed for ACPA-IgG is absent from ACPA-IgM. Ann. Rheum. Dis. 77, 1087–1088 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Kissel, T. et al. Genetic predisposition (HLA-SE) is associated with ACPA-IgG variable domain glycosylation in the predisease phase of RA. Ann. Rheum. Dis. 81, 141–143 (2022).

    Article  PubMed  Google Scholar 

  124. Suwannalai, P. et al. Avidity maturation of anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheum. 64, 1323–1328 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Lardinois, O. M. et al. Immunoglobulins G from patients with ANCA-associated vasculitis are atypically glycosylated in both the Fc and Fab regions and the relation to disease activity. PLoS One 14, e0213215 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hafkenscheid, L. et al. N-linked glycans in the variable domain of IgG anti-citrullinated protein antibodies predict the development of rheumatoid arthritis. Arthritis Rheumatol. 71, 1626–1633 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bohler, C., Radner, H., Smolen, J. S. & Aletaha, D. Serological changes in the course of traditional and biological disease modifying therapy of rheumatoid arthritis. Ann. Rheum. Dis. 72, 241–244 (2013).

    Article  PubMed  CAS  Google Scholar 

  128. Kastbom, A., Strandberg, G., Lindroos, A. & Skogh, T. Anti-CCP antibody test predicts the disease course during 3 years in early rheumatoid arthritis (the Swedish TIRA project). Ann. Rheum. Dis. 63, 1085–1089 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. de Moel, E. C. et al. In rheumatoid arthritis, changes in autoantibody levels reflect intensity of immunosuppression, not subsequent treatment response. Arthritis Res. Ther. 21, 28 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bos, W. H. et al. Differential response of the rheumatoid factor and anticitrullinated protein antibodies during adalimumab treatment in patients with rheumatoid arthritis. J. Rheumatol. 35, 1972–1977 (2008).

    CAS  PubMed  Google Scholar 

  131. de Moel, E. C. et al. In RA, becoming seronegative over the first year of treatment does not translate to better chances of drug-free remission. Ann. Rheum. Dis. 77, 1836–1838 (2018).

    Article  PubMed  CAS  Google Scholar 

  132. Pelzek, A. J. et al. Persistence of disease-associated anti-citrullinated protein antibody-expressing memory B cells in rheumatoid arthritis in clinical remission. Arthritis Rheumatol. 69, 1176–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Titcombe, P. J. et al. Pathogenic citrulline-multispecific B cell receptor clades in rheumatoid arthritis. Arthritis Rheumatol. 70, 1933–1945 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kristyanto, H. et al. Persistently activated, proliferative memory autoreactive B cells promote inflammation in rheumatoid arthritis. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaz5327 (2020).

    Article  PubMed  Google Scholar 

  135. Kerkman, P. F. et al. Circulating plasmablasts/plasmacells as a source of anticitrullinated protein antibodies in patients with rheumatoid arthritis. Ann. Rheum. Dis. 72, 1259–1263 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Kerkman, P. F. et al. Identification and characterisation of citrullinated antigen-specific B cells in peripheral blood of patients with rheumatoid arthritis. Ann. Rheum. Dis. 75, 1170–1176 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Corsiero, E. et al. Single cell cloning and recombinant monoclonal antibodies generation from RA synovial B cells reveal frequent targeting of citrullinated histones of NETs. Ann. Rheum. Dis. 75, 1866–1875 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Kerkman, P. F. et al. Synovial fluid mononuclear cells provide an environment for long-term survival of antibody-secreting cells and promote the spontaneous production of anti-citrullinated protein antibodies. Ann. Rheum. Dis. 75, 2201–2207 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Verstappen, M., Niemantsverdriet, E., Matthijssen, X. M. E., le Cessie, S. & van der Helm-van Mil, A. H. M. Early DAS response after DMARD-start increases probability of achieving sustained DMARD-free remission in rheumatoid arthritis. Arthritis Res. Ther. 22, 276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Frolich, D. et al. Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells. J. Immunol. 185, 3103–3110 (2010).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Rene E. M. Toes.

Ethics declarations

Competing interests

H.U.S. and R.E.M.T. are mentioned inventors on a patent application relating to ACPA-IgG V-domain glycosylation. D.v.d.W. declares no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks A. Radbruch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scherer, H.U., van der Woude, D. & Toes, R.E.M. From risk to chronicity: evolution of autoreactive B cell and antibody responses in rheumatoid arthritis. Nat Rev Rheumatol 18, 371–383 (2022). https://doi.org/10.1038/s41584-022-00786-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00786-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing