Skip to main content
Log in

Local Structural Stability of the Acyl-Coenzyme A Binding Protein by ESR Spectroscopy

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The acyl-coenzyme A binding protein (ACBP) is a conserved regulator of several cell and phylogenetic functions, including lipid synthesis, energy metabolism, autophagy, and appetite stimulations. ACBP is a small four-helix bundle protein whose structure has been studied by NMR spectroscopy, but its thermal stability has not been studied by electron spin resonance (ESR). Here, we characterize the structural dynamics and determine site-specific local thermal stability of ACBP in apo versus holo (i.e., the palmitoyl-CoA bound form) states using circular dichroism, fluorescence, pulsed dipolar ESR spectroscopies, and the recently developed ESR-based peak-height method. We recorded ESR spectra of single-labeled apo and holo ACBP at temperatures from 300 to 355 K. The ESR spectra in the absorption mode (i.e., integrated ESR spectra) were analyzed to determine the onset of local disruption for individual sites during thermal denaturation. Using the ESR-based peak-height method, this study reveals a previously undescribed response of ACBP that the binding of palmitoyl-CoA to ACBP not only promotes the stability of the binding region (helices α1–α3) but also causes a distinct increase in the thermal stability of the interface between helices α1 and α4, a region distant from the binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Chao, G.G. Martin, W.K. Russell, S.D. Waghela, D.H. Russell, F. Schroeder, A.B. Kier, Biochemistry 41, 10540 (2002)

    Article  Google Scholar 

  2. F.M. Poulsen, B.B. Kragelund, P. Osmark, T.B. Neergaard, J. Schiødt, K. Kristiansen, J. Knudsen, Nat. Struct. Biol. 6, 594 (1999)

    Article  Google Scholar 

  3. M.C. Micheletto, L.F.S. Mendes, L.G.M. Basso, R.G. Fonseca-Maldonado, A.J. Costa-Filho, Int. J. Biol. Macromol. 102, 284 (2017)

    Article  Google Scholar 

  4. B.B. Kragelund, J. Knudsen, F.M. Poulsen, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1441, 150 (1999)

    Article  Google Scholar 

  5. N. Charmpilas, C. Ruckenstuhl, V. Sica, S. Büttner, L. Habernig, S. Dichtinger, F. Madeo, N. Tavernarakis, J.M. Bravo-San Pedro, G. Kroemer, Cell Death Dis. 11, 7 (2020)

    Article  Google Scholar 

  6. J.M. Bravo-San Pedro, V. Sica, I. Martins, J. Pol, F. Loos, M.C. Maiuri, S. Durand, N. Bossut, F. Aprahamian, G. Anagnostopoulos, M. Niso-Santano, F. Aranda, I. Ramírez-Pardo, J. Lallement, J. Denom, E. Boedec, P. Gorwood, N. Ramoz, K. Clément, V. Pelloux, A. Rohia, F. Pattou, V. Raverdy, R. Caiazzo, R.G.P. Denis, P. Boya, L. Galluzzi, F. Madeo, S. Migrenne-Li, C. Cruciani-Guglielmacci, N. Tavernarakis, C. López-Otín, C. Magnan, G. Kroemer, Cell Metab. 30, 754 (2019)

    Article  Google Scholar 

  7. B.B. Kragelund, C.V. Robinson, J. Knudsen, C.M. Dobson, F.M. Poulsen, Biochemistry 34, 7217 (1995)

    Article  Google Scholar 

  8. B.B. Kragelund, K. Poulsen, K.V. Andersen, T. Baldursson, J.B. Krøll, T.B. Neergård, J. Jepsen, P. Roepstorff, K. Kristiansen, F.M. Poulsen, J. Knudsen, Biochemistry 38, 2386 (1999)

    Article  Google Scholar 

  9. B.B. Kragelund, K.V. Andersen, J.C. Madsen, J. Knudsen, F.M. Poulsen, J. Mol. Biol. 230, 1260 (1993)

    Article  Google Scholar 

  10. C. Rischel, J.C. Madsen, K.V. Andersen, F.M. Poulsen, Biochemistry 33, 13997 (1994)

    Article  Google Scholar 

  11. B.B. Kragelund, J. Knudsen, F.M. Poulsen, J. Mol. Biol. 250, 695 (1995)

    Article  Google Scholar 

  12. C.-L. Hung, Y.-Y. Lin, H.-H. Chang, Y.-W. Chiang, RSC Adv. 8, 34656 (2018)

    Article  ADS  Google Scholar 

  13. C.-L. Hung, Y.-H. Kuo, S.W. Lee, Y.-W. Chiang, J. Phys. Chem. B 125, 8373 (2021)

    Article  Google Scholar 

  14. Z. Zhang, M.R. Fleissner, D.S. Tipikin, Z. Liang, J.K. Moscicki, K.A. Earl, W.L. Hubbell, J.H. Freed, J. Phys. Chem. B 114, 5503 (2010)

    Article  Google Scholar 

  15. Y.-W. Chiang, Y. Otoshima, Y. Watanabe, O. Inanami, Y. Shimoyama, J. Biomol. Struct. Dyn. 26, 355 (2008)

    Article  Google Scholar 

  16. G. Jeschke, Annu Rev Phys Chem 63, 419 (2012)

    Article  ADS  Google Scholar 

  17. Y. Lai, Y. Kuo, Y. Chiang, Chem Asian J. 14, 3981 (2019)

    Article  Google Scholar 

  18. Y.-C. Lai, C.-C. Li, T.-C. Sung, C.-W. Chang, Y.-J. Lan, Y.-W. Chiang, Biochim. Biophys. Acta BBA Biomembr. 1861, 268 (2019)

    Article  Google Scholar 

  19. Y.W. Chiang, Y. Shimoyama, G.W. Feigenson, J.H. Freed, Biophys. J. 87, 2483 (2004)

    Article  ADS  Google Scholar 

  20. C.-C. Li, T.-Y. Kao, C.-C. Cheng, Y.-W. Chiang, Proc. Natl. Acad. Sci. 117, 30126 (2020)

    Article  ADS  Google Scholar 

  21. E.R. Georgieva, A.S. Roy, V.M. Grigoryants, P.P. Borbat, K.A. Earle, C.P. Scholes, J.H. Freed, J. Magn. Reson. 216, 69 (2012)

    Article  ADS  Google Scholar 

  22. Y.-W. Huang, Y.-C. Lai, C.-J. Tsai, Y.-W. Chiang, Proc. Natl. Acad. Sci. 108, 14145 (2011)

    Article  ADS  Google Scholar 

  23. Y.-J. Lan, P.-S. Yeh, T.-Y. Kao, Y.-C. Lo, S.-C. Sue, Y.-W. Chen, D.W. Hwang, Y.-W. Chiang, Commun. Biol. 3, 668 (2020)

    Article  Google Scholar 

  24. G. Jeschke, V. Chechik, P. Ionita, A. Godt, H. Zimmermann, J. Banham, C.R. Timmel, D. Hilger, H. Jung, Appl. Magn. Reson. 30, 473 (2006)

    Article  Google Scholar 

  25. Y.-W. Chiang, P.P. Borbat, J.H. Freed, J. Magn. Reson. 172, 279 (2005)

    Article  ADS  Google Scholar 

  26. H.C. Jubb, A.P. Higueruelo, B. Ochoa-Montaño, W.R. Pitt, D.B. Ascher, T.L. Blundell, J. Mol. Biol. 429, 365 (2017)

    Article  Google Scholar 

  27. B.B. Kragelund, P. Højrup, M.S. Jensen, C.K. Schjerling, E. Juul, J. Knudsen, M. Poulsen, J. Mol. Biol. 256, 187 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (108-2113-M-007-029 and 110-2731-M-007-001) from the Ministry of Science and Technology of Taiwan and the Frontier Research Center on Fundamental and Applied Sciences of Matters at NTHU. All the ESR measurements were conducted in the Research Instrument Center of Taiwan located at NTHU.

Funding

Ministry of Science and Technology, Taiwan, 108-2113-M-007-029, Yun-Wei Chiang, 110-2731-M-007-001,Yun-Wei Chiang

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Wei Chiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2330 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, CL., Lee, S.W. & Chiang, YW. Local Structural Stability of the Acyl-Coenzyme A Binding Protein by ESR Spectroscopy. Appl Magn Reson 54, 107–118 (2023). https://doi.org/10.1007/s00723-022-01476-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-022-01476-w

Navigation