Skip to main content

Advertisement

Log in

Formulation, Optimization, and Evaluation of Ultradeformable Nanovesicles for Effective Topical Delivery of Hydroquinone

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The present study aimed to develop, statistically optimize, and characterize hydroquinone-loaded transfersomes (HQ-TFs) for effective topical delivery by mitigating the problems associated with HQ.

Methods

HQ-TFs were prepared by the thin-film hydration method and characterized for particle size, zeta potential (ZP), entrapment efficiency (EE), in vitro drug release, and skin penetration potential. The optimized hydroquinone-loaded transfersome (OPT-HQ-TF) was incorporated in a gel and evaluated for ex vivo skin permeation and deposition profile, in vitro antioxidant activity, in vitro cytotoxicity study, in vitro tyrosinase inhibition assay, and dermal skin irritation study.

Results

The OPT-HQ-TF showed a particle size of 210 nm, ZP of − 15.10 mV, and EE% of 67.61. The cumulative drug release % from transfersomal formulations ranged from 54.39 ± 1.92 to 76.05 ± 1.18%. The fluorescence microscopy investigation revealed the penetration of transfersomes into deeper skin layers. The skin permeation and deposition studies indicated that the OPT-HQ-TF gel improved permeation and drug retention in the skin compared to the HQ plain gel. The antioxidant assay revealed that HQ retained its antioxidant activity after encapsulation. The cytotoxicity study demonstrated that the OPT-HQ-TF gel significantly decreased the cytotoxicity towards L-929 mouse fibroblast. The tyrosinase inhibition assay specified that the OPT-HQ-TF gel has the potential to treat hyperpigmentation. The dermal skin irritation study indicated that the OPT-HQ-TF gel is safe and non-irritant.

Conclusion

The present study findings suggested the potential application of deformable nanovesicles as an innovative topical drug delivery system of HQ in the treatment of hyperpigmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rathee P, Kumar S, Kumar D, Kumari B, Yadav SS. Skin hyperpigmentation and its treatment with herbs: an alternative method. Future J Pharm Sci. 2021;132(7):1–14.

    Google Scholar 

  2. Cichorek M, Wachulska M, Stasiewicz A, Tyminska A. Skin melanocytes: biology and development. Postepy Dermatol Alergol. 2013;30(1):30–41.

    PubMed  PubMed Central  Google Scholar 

  3. Cook-Bolden FE, Hamilton SF. An open-label study of the efficacy and tolerability of microencapsulated hydroquinone 4% and retinol 0.15% with antioxidants for the treatment of hyperpigmentation. Cutis. 2008;81:365–371.

  4. Rendona M, Horwitzb S. Topical treatment of hyperpigmentation disorders. Ann Dermatol Venereol. 2012;139:153–8.

    Google Scholar 

  5. Taylor A, Pawaskar M, Taylor SL, Balkrishnan R, Feldman SR. Prevalence of pigmentary disorders and their impact on quality of life: a prospective cohort study. J Cosmet Dermatol. 2008;7:164–8.

    PubMed  Google Scholar 

  6. Draelos ZD. Skin lightening preparations and the hydroquinone controversy. Dermatol Ther. 2007;20:308–13.

    PubMed  Google Scholar 

  7. Rendon MI, Gaviria JI. Review of skin-lightening agents. Dermatol Surg. 2005;31(7):886–9.

    CAS  PubMed  Google Scholar 

  8. Rossi AM, Perez MI. Treatment of hyperpigmentation. Facial Plast Surg Clin N Am. 2011;19(2):313–24.

    Google Scholar 

  9. Ghanbarzadeh S, Haririb R, Kouhsoltanic M, Shokrid J, Javadzadehe Y, Hamishehkarf H. Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles. Colloids Surf B. 2015;136:1004–10.

    CAS  Google Scholar 

  10. Obagi ZE. Taking the pulse of hydroquinone therapy: a plea for caution. Pract. Dermatol. 2013;39–42.

  11. Serrano DR, Gordo MJ, Matji A, Gonzalez S, Lalatsa A, Torrado JJ. Tuning the transdermal delivery of hydroquinone upon formulation with novel permeation enhancers. Pharmaceutics. 2019;11(4):167.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pandey P, Satija S, Wadhwa R, Mehta M, Purohit D, Gupta G, Prasher P, Chellappan DK, Awasthi R, Dureja H, Dua K. Emerging trends in nanomedicine for topical delivery in skin disorders: current and translational approaches. Dermatol Ther. 2020;33(3):1–12.

    Google Scholar 

  13. Kumar A, Pathak K, Bali V. Ultra-adaptable nanovesicular systems: a carrier for systemic delivery of therapeutic agents. Drug Discov Today. 2012;17(21–22):1233–41.

    CAS  PubMed  Google Scholar 

  14. Madni A, Kousar R, Naeema N, Wahid F. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J Bioresour Bioprod. 2021;6(1):11–25.

    CAS  Google Scholar 

  15. Fatima A, Yasir S, Khan MS, Manan S, Ullah MW, Ul-Islam M. Plant extract-loaded bacterial cellulose composite membrane for potential biomedical applications. J Bioresour Bioprod. 2021;6(1):26–32.

    CAS  Google Scholar 

  16. Monteiro RC, Kishore BN, Bhat RM, Sukumar D, Martis J, Ganesh HK. A comparative study of the efficacy of 4% hydroquinone vs 0.75% kojic acid cream in the treatment of facial melasma. Indian J Dermatol. 2013;58(2):157.

  17. Grimes PE. A microsponge formulation of hydroquinone 4% and retinol 0.15% in the treatment of melasma and postinflammatory hyperpigmentation. Cutis. 2004;74(6):362–368.

  18. Taheri A, Mohammadi M. The use of cellulose nanocrystals for potential application in topical delivery of hydroquinone. Chem Biol Drug Des. 2015;86(1):102–6.

    PubMed  Google Scholar 

  19. Okur NU, Caglar ES, Pekcan AN, Okur ME, Ayla S. Preparation, optimization and in vivo anti-inflammatory evaluation of hydroquinone loaded microemulsion formulations for melasma treatment. J Pharm Res. 2019;23(4):662–70.

    CAS  Google Scholar 

  20. Salimi A, Hajiani MK. Enhanced stability and dermal delivery of hydroquinone using microemulsion-based system. Asian J Pharm. 2017;11(4):773–81.

    Google Scholar 

  21. Wu PS, Lin CH, Kuo YC, Lin CC. Formulation and characterization of hydroquinone nanostructured lipid carriers by homogenization emulsification method. J Nanomater. 2017;1–7.

  22. Khoshneviszadeh R, Bazzaz BSF, Housaindokht MR, Habibi AE, Rajabi A. A comparison of explanation methods of encapsulation efficacy of hydroquinone in a liposomal system. J Paramed Sci. 2016;7(2):23–8.

    Google Scholar 

  23. Azarbayjani AF, Talebi N, Diba K. Development and characterization of hydroquinone-loaded nanofiber for topical delivery: effect of chitosan. Int J Polym Anal Charact. 2019;1–9.

  24. Abdellatif AAH, Tawfeek HM. Transfersomal nanoparticles for enhanced transdermal delivery of clindamycin. AAPS J. 2016;17(5):1067–74.

    CAS  Google Scholar 

  25. Arora D, Khurana B, Nanda S. DoE directed optimization, development and evaluation of resveratrol loaded ultradeformable vesicular cream for topical antioxidant benefits. Drug Dev Ind Pharm. 2020;46(2):227–35.

    CAS  PubMed  Google Scholar 

  26. Tawfeek HM, Abdellatif AAH, Aleema JAA, Hassand YA, Fathallaf D. Transfersomal gel nanocarriers for enhancement the permeation of lornoxicam. J Drug Deliv Sci Technol. 2020;56:1–10.

    Google Scholar 

  27. Almehmady AM, Elsisi AM. Development, optimization, and evaluation of tamsulosin nanotransfersomes to enhance its permeation and bioavailability. J Drug Deliv Sci Technol. 2020;57.

  28. Dudhipala N, Mohammed RP, Youssef AAA, Banala N. Effect of lipid and edge activator concentration on development of aceclofenac-loaded transfersomes gel for transdermal application: in vitro and ex vivo skin permeation. Drug Dev Ind Pharm. 2020;46(8):1334–44.

    CAS  PubMed  Google Scholar 

  29. Chen M, Shamim MA, Shahid A, Yeung S, Andresen BT, Wang J, Nekkanti V, Meyskens FL Jr, Kelly KM, Huang Y. Topical delivery of carvedilol loaded nano-transfersomes for skin cancer chemoprevention. Pharmaceutics. 2020;12(12):1–17.

    CAS  Google Scholar 

  30. Peram MR, Jalalpure S, Kumbar V, Patil S, Joshi S, Bhat K, Diwan P. Factorial design-based curcumin ethosomal nanocarriers for the skin cancer delivery: in vitro evaluation. J Liposome Res. 2019;29(3):291–311.

    CAS  PubMed  Google Scholar 

  31. Avadhani KS, Manikkath J, Tiwari M, Chandrasekhar M, Godavarthi A, Vidya SM, Hariharapura RC, Kalthur G, Udupa N, Mutalik S. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv. 2017;24(1):61–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jain S, Kale1 DP, Swami R, Katiyar SS. Codelivery of benzoyl peroxide & adapalene using modified liposomal gel for improved acne therapy. Nanomedicine. 2018;13(12):1481–1493.

  33. Gupta A, Bargode RS, Jain S, Shukla K. Formulation and evaluation of econazole transferosomal gel. IAR J Med Cse Rep. 2021;2(5):5–15.

    Google Scholar 

  34. Vasanth S, Dubey A, Ravi GS, Lewis SA, Ghate VM, El-Zahaby SA, Hebbar S. Development and investigation of vitamin C-enriched adapalene-loaded transfersome gel: a collegial approach for the treatment of acne vulgaris. AAPS Journal. 2020;21(61):1–17.

    Google Scholar 

  35. Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, Alam MA. Pharmacodynamic study of eprosartan mesylate-loaded transfersomes Carbopol® gel under Dermaroller® on rats with methyl prednisolone acetate-induced hypertension. Biomed Pharmacother. 2017;89:177–84.

    CAS  PubMed  Google Scholar 

  36. Shrotriya S, Ranpise N, Satpute P, Vidhate B. Skin targeting of curcumin solid lipid nanoparticles-engrossed topical gel for the treatment of pigmentation and irritant contact dermatitis. Artif Cells Nanomed Biotechnol. 2018;46(7):1471–82.

    CAS  PubMed  Google Scholar 

  37. OECD. Test No. 404: Acute Dermal Irritation/Corrosion, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris. 2015. https://doi.org/10.1787/9789264242678-en.

  38. Wanga J, Li Z, Sun F, Tang S, Zhang S, Lv P, Li J, Cao X. Evaluation of dermal irritation and skin sensitization due to vitacoxib. Toxicol Rep. 2017;4:287–90.

    Google Scholar 

  39. Banerjee S, Chattopadhyay P, Ghosh A, Pathak MP, Singh S, Veer V. Acute dermal irritation, sensitization, and acute toxicity studies of a transdermal patch for prophylaxis against (±) anatoxin-A poisoning. Int J Toxicol. 2013;32(4):308–13.

    PubMed  Google Scholar 

  40. Aggarwal N, Goindi S. Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized guinea pig model of Microsporum canis-Dermatophytosis. Int J Pharm. 2012;437(1–2):277–87.

    CAS  PubMed  Google Scholar 

  41. Zhai Y, Xu R, Wang Y, Liu J, Wang Z, Zhai G. Ethosomes for skin delivery of ropivacaine: preparation, characterization and ex vivo penetration properties. J Liposome Res. 2015;25(4):316–24.

    CAS  PubMed  Google Scholar 

  42. Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: a promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics. 2020;12(9):1–23.

    Google Scholar 

  43. Abdelmonem R, Hamed RR, Abdelhalim SA, ElMiligi MF, El-Nabarawi MA. Formulation and characterization of cinnarizine targeted aural transfersomal gel for vertigo treatment: a pharmacokinetic study on rabbits. Int J Nanomed. 2020;15:6211–23.

    CAS  Google Scholar 

  44. Carreras JJ, Tapia-Ramirez WE, Salal A, Guillot AJ, Garrigues TM, Melero A. Ultraflexible lipid vesicles allow topical absorption of cyclosporin A. Drug Deliv Transl Res. 2019;10(2):486–97.

    Google Scholar 

  45. Jangdey MS, Gupta A, Saraf S, Saraf S. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: in vitro evaluation. Artif Cells Nanomed Biotechnol. 2017;45(7):1452–62.

    CAS  PubMed  Google Scholar 

  46. Qushawy M, Nasr A, Abd-Alhaseeb M, Swidan S. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics. 2018;10(1):26.

    PubMed  PubMed Central  Google Scholar 

  47. Pena-Rodriguez E, Moreno MC, Blanco-Fernandez B, Gonzalez J, Fernández-Campos F. Epidermal delivery of retinyl palmitate loaded transfersomes: Penetration and biodistribution studies. Pharmaceutics. 2020;12(2):1–14.

    Google Scholar 

  48. Chen J, Lu W, Gu W, Lu S, Chen Z, Cai B. Skin permeation behavior of elastic liposomes: role of formulation ingredients. Expert Opin Drug Deliv. 2013;10(6):845–56.

    CAS  PubMed  Google Scholar 

  49. Arora D, Khurana B, Nanda S. Statistical development and in vivo evaluation of resveratrol loaded topical gel containing deformable vesicles for a significant reduction in photoinduced skin aging and oxidative stress. Drug Dev Ind Pharm. 2020;46(11):1898–910.

    CAS  PubMed  Google Scholar 

  50. Doppalapudi S, Shaheen M, Khan W. Development and in vitro assessment of psoralen and resveratrol co-loaded ultradeformable liposomes for the treatment of vitiligo. J Photochem Photobiol B: Biol. 2017;174:44–57.

    CAS  Google Scholar 

  51. Elsayed I, El-Dahmy RM, El-Emam SZ, Elshafeey AH, El-Gawad NAA, El-Gazayerly ON. Response surface optimization of biocompatible elastic nanovesicles loaded with rosuvastatin calcium: enhanced bioavailability and anticancer efficacy. Drug Deliv Transl Res. 2020;10(5):1459–75.

    CAS  PubMed  Google Scholar 

  52. Strzepek-Gomolka M, Gawel-Beben K, Angelis A, Antosiewicz B, Sakipova Z, Kozhanova K, Glowniak K, Kukula-Koch W. Identification of mushroom and murine tyrosinase inhibitors from Achillea biebersteinii Afan. extract. Molecules. 2021;26(4):964.

  53. Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2019;34(1):279–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chaudhary H, Kohli K, Kumar V. A novel nano-carrier transdermal gel against inflammation. Int J Pharm. 2014;465(1–2):175–86.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the kind support of Lipoid GmBH, Ludwigshafen, Germany, for providing the gift sample Phospholipon® 90 G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malleswara Rao Peram.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamadar, A.T., Peram, M.R., Chandrasekhar, N. et al. Formulation, Optimization, and Evaluation of Ultradeformable Nanovesicles for Effective Topical Delivery of Hydroquinone. J Pharm Innov 18, 506–524 (2023). https://doi.org/10.1007/s12247-022-09657-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-022-09657-7

Keywords

Navigation