Skip to main content

Advertisement

Log in

Systematic Optimization of Solid Lipid Nanoparticles of Silybin for Improved Oral Drug Delivery by Box-Behnken Design: In Vitro and In Vivo Evaluations

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Silybin (SB) is the most potent flavonolignan extracted from the milk thistle plant, showing anti-oxidative properties. Owing to the lipophilic nature of SB, the oral bioavailability of SB is low. This study developed and optimized SB loaded solid lipid nanoparticles (SB-SLNs), and evaluated their in vitro and in vivo characteristics.

Methods

The applied method of SLNs production was solvent emulsification and evaporation, using stearic acid as the solid lipid core and Cremophor® RH40 as the surfactant. The statistical optimization was determined using Box-Behnken design. The morphology of the optimized silybin-loaded SLNs was detected by scanning electron microscopy. Also, differential scanning calorimetry (DSC), Fourier transformation infrared spectroscopy (FTIR), and powder X-ray diffractometry (P-XRD) were used to characterize SLNs’ physicochemical properties. Moreover, in vivo studies for pharmacokinetic properties of SB were performed on male Wistar rats.

Results

The optimum formulation exhibited the size of 262.36 ± 12 nm, and -22.22 ± 0.87 mV of zeta potential and 74.02 ± 1.66% of entrapment efficiency. The scanning electron microscopy(SEM) images demonstrated the rough-surfaced ovate structure of SB-SLNs, and solid-state research evince the amorphous state of SB-SLNs. The in vivo evaluations showed an increased bioavailability of SLN formulation higher than pure SB in plasma.

Conclusion

The significant improvement of SB-SLNs pharmacokinetic properties after single oral dose administration specified SLNs as a capable drug delivery system for SB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci. 2018;19:1578.

    PubMed  PubMed Central  Google Scholar 

  2. Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: Advances and opportunities. Nat Rev Drug Discov. 2021;20:200–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Comelli MC, Mengs U, Schneider C, Prosdocimi M. Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy. Integr Cancer Ther. 2007;6:120–9.

    CAS  PubMed  Google Scholar 

  4. El-Samaligy M, Afifi N, Mahmoud E. Increasing bioavailability of silymarin using a buccal liposomal delivery system: preparation and experimental design investigation. Int J Pharm. 2006;308:140–8.

    CAS  PubMed  Google Scholar 

  5. Sun N, Wei X, Wu B, Chen J, Lu Y, Wu W. Enhanced dissolution of silymarin/polyvinylpyrrolidone solid dispersion pellets prepared by a one-step fluid-bed coating technique. Powder Technol. 2008;182(1):72–80.

    CAS  Google Scholar 

  6. Bijak M. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)—Chemistry, bioavailability, and metabolism. Molecules. 2017;22:1942.

    PubMed  PubMed Central  Google Scholar 

  7. Woo JS, Kim T-S, Park J-H, Chi S-C. Formulation and biopharmaceutical evaluation of silymarin using SMEDDS. Arch Pharm Res. 2007;30:82–9.

    CAS  PubMed  Google Scholar 

  8. Raval M, Patel P, Airao V, Bhatt V, Sheth N. Novel Silibinin Loaded Chitosan-Coated PLGA/PCL Nanoparticles Based Inhalation Formulations with Improved Cytotoxicity and Bioavailability for Lung Cancer. BioNanoScience. 2021;11:67–83.

    Google Scholar 

  9. Wu W, Wang Y, Que L. Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system. Eur J Pharm Biopharm. 2006;63:288–94.

    CAS  PubMed  Google Scholar 

  10. Wu J-W, Lin L-C, Hung S-C, Chi C-W, Tsai T-H. Analysis of silibinin in rat plasma and bile for hepatobiliary excretion and oral bioavailability application. J Pharm Biomed Ana. 2007;45:635–41.

    CAS  Google Scholar 

  11. Yan-yu X, Yun-mei S, Zhi-peng C, Qi-neng P. Preparation of silymarin proliposome: a new way to increase oral bioavailability of silymarin in beagle dogs. Int J Pharm. 2006;319:162–8.

    PubMed  Google Scholar 

  12. Müller RH, MaÈder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–77.

    PubMed  Google Scholar 

  13. Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2012;64:83–101.

    Google Scholar 

  14. Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, Kumar NS, Vekariya RL. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Adv. 2020;10:26777–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lavelle E, Sharif S, Thomas N, Holland J, Davis S. The importance of gastrointestinal uptake of particles in the design of oral delivery systems. Adv Drug Deliv Rev. 1995;18:5–22.

    CAS  Google Scholar 

  16. Yang S, Zhu J, Lu Y, Liang B, Yang C. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res. 1999;16:751–7.

    CAS  PubMed  Google Scholar 

  17. Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin Ther Pat. 2020;30:179–94.

    CAS  PubMed  Google Scholar 

  18. Nooli M, Chella N, Kulhari H, Shastri NR, Sistla R. Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: formulation, optimization and in vivo evaluation. Drug Dev Ind Pharm. 2017;43:611–7.

    CAS  PubMed  Google Scholar 

  19. Patel MH, Mundada VP, Sawant KK. Fabrication of solid lipid nanoparticles of lurasidone HCl for oral delivery: optimization, in vitro characterization, cell line studies and in vivo efficacy in schizophrenia. Drug Dev Ind Pharm. 2019;45:1242–57.

    CAS  PubMed  Google Scholar 

  20. Diwan R, Ravi PR, Pathare NS, Aggarwal V. Pharmacodynamic, pharmacokinetic and physical characterization of cilnidipine loaded solid lipid nanoparticles for oral delivery optimized using the principles of design of experiments. Colloids Surf B Biointerfaces. 2020;193:111073.

    CAS  PubMed  Google Scholar 

  21. He Y, Zhan C, Pi C, Zuo Y, Yang S, Hu M, Bai Y, Zhao L, Wei Y. Enhanced oral bioavailability of felodipine from solid lipid nanoparticles prepared through effervescent dispersion technique. AAPS PharmSciTech. 2020;21:1.

    Google Scholar 

  22. Nagaraj B, Tirumalesh C, Dinesh S, Narendar D. Zotepine loaded lipid nanoparticles for oral delivery: development, characterization, and in vivo pharmacokinetic studies. Future J Pharm Sci. 2020;6:37.

    Google Scholar 

  23. Saad S, Ahmad I, Kawish SM, Khan UA, Ahmad FJ, Ali A, Jain GK. Improved cardioprotective effects of hesperidin solid lipid nanoparticles prepared by supercritical antisolvent technology. Colloids Surf B Biointerfaces. 2020;187:110628.

    CAS  PubMed  Google Scholar 

  24. Joseph E, Saha RN. Investigations on pharmacokinetics and biodistribution of polymeric and solid lipid nanoparticulate systems of atypical antipsychotic drug: effect of material used and surface modification. Drug Dev Ind Pharm. 2017;43:678–86.

    CAS  PubMed  Google Scholar 

  25. Porter CJ, Pouton CW, Cuine JF, Charman WN. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev. 2008;60:673–91.

    CAS  PubMed  Google Scholar 

  26. Müllertz A, Ogbonna A, Ren S, Rades T. New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs. J Pharm Pharmacol. 2010;62:1622–36.

    PubMed  Google Scholar 

  27. Zeng L, Xin X, Zhang Y. Development and characterization of promising Cremophor EL-stabilized o/w nanoemulsions containing short-chain alcohols as a cosurfactant. RSC Adv. 2017;7:19815–27.

    CAS  Google Scholar 

  28. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull. 2015;5:305.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Daneshmand S, Golmohammadzadeh S, Jaafari MR, Movaffagh J, Rezaee M, Sahebkar A, et al. Encapsulation challenges, the substantial issue in solid lipid nanoparticles characterization. J Cell Biochem. 2018;119:4251–64.

    CAS  PubMed  Google Scholar 

  30. Duan S, Guan X, Lin R, Liu X, Yan Y, Lin R, et al. Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: a dual-target drug for the treatment of Alzheimer’s disease. Neurobiol Aging. 2015;36:1792–807.

    CAS  PubMed  Google Scholar 

  31. Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Bio. 2010;99:306–14.

    Google Scholar 

  32. Rompicharla SVK, Bhatt H, Shah A, Komanduri N, Vijayasarathy D, Ghosh B, et al. Formulation optimization, characterization, and evaluation of in vitro cytotoxic potential of curcumin loaded solid lipid nanoparticles for improved anticancer activity. Chem Phys Lipids. 2017;208:10–8.

    CAS  PubMed  Google Scholar 

  33. Asasutjarit R, Lorenzen S-I, Sirivichayakul S, Ruxrungtham K, Ruktanonchai U, Ritthidej GC. Effect of solid lipid nanoparticles formulation compositions on their size, zeta potential and potential for in vitro pHIS-HIV-hugag transfection. Pharm Res. 2007;24:1098–107.

    CAS  PubMed  Google Scholar 

  34. Farsani PA, Mahjub R, Mohammadi M, Oliaei SS, Mahboobian MM. Development of Perphenazine-Loaded Solid Lipid Nanoparticles: Statistical Optimization and Cytotoxicity Studies. Biomed Res Int. 2021;1–14.

  35. El-Say KM, Hosny KM. Optimization of carvedilol solid lipid nanoparticles: An approach to control the release and enhance the oral bioavailability on rabbits. PLoS ONE. 2018;13:e0203405.

    PubMed  PubMed Central  Google Scholar 

  36. Dudhipala N, Janga KY. Lipid nanoparticles of zaleplon for improved oral delivery by Box-Behnken design: optimization, in vitro and in vivo evaluation. Drug Dev Ind Pharm. 2017;43:1205–14.

    CAS  PubMed  Google Scholar 

  37. Bhalekar M, Upadhaya P, Madgulkar A. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir. Appl Nanosci. 2017;7:47–57.

    CAS  Google Scholar 

  38. Kashi TSJ, Eskandarion S, Esfandyari-Manesh M, Marashi SMA, Samadi N, Fatemi SM, et al. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method. Int J Nanomed. 2012;7:221.

    Google Scholar 

  39. Dodiya S, Chavhan S, Korde A, Sawant KK. Solid lipid nanoparticles and nanosuspension of adefovir dipivoxil for bioavailability improvement: formulation, characterization, pharmacokinetic and biodistribution studies. Drug Dev Ind Pharm. 2013;39:733–43.

    CAS  PubMed  Google Scholar 

  40. Zhu Y, Wang M, Zhang Y, Zeng J, Omari-Siaw E, Yu J, et al. In vitro release and bioavailability of silybin from micelle-templated porous calcium phosphate microparticles. AAPS PharmSciTech. 2016;17:1232–9.

    CAS  PubMed  Google Scholar 

  41. Harde H, Das M, Jain S. Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin Drug Deliv. 2011;8:1407–24.

    CAS  PubMed  Google Scholar 

  42. Sinha VR. Enhancement of in vivo efficacy and oral bioavailability of aripiprazole with solid lipid nanoparticles. AAPS PharmSciTech. 2018;19:1264–73.

    PubMed  Google Scholar 

  43. He Y, Zhan C, Pi C, Zuo Y, Yang S, Hu M, Bai Y, Zhao L, Wei Y. Enhanced oral bioavailability of felodipine from solid lipid nanoparticles prepared through effervescent dispersion technique. AAPS PharmSciTech. 2020;21:170.

    PubMed  Google Scholar 

  44. Hassan H, Adam SK, Alias E, Meor Mohd Affandi MM, Shamsuddin AF, Basir R. Central Composite Design for Formulation and Optimization of Solid Lipid Nanoparticles to Enhance Oral Bioavailability of Acyclovir. Molecules. 2021;26:5432.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ban C, Jo M, Park YH, Kim JH, Han JY, Lee KW, Kweon DH, Choi YJ. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chem. 2020;302:125328.

    CAS  PubMed  Google Scholar 

  46. Nasirizadeh S, Malaekeh-Nikouei B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J Drug Deliv Sci Technol. 2020;55:101458.

    CAS  Google Scholar 

  47. Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. J Drug Target. 2006;14:632–45.

    CAS  PubMed  Google Scholar 

  48. Talegaonkar S, Bhattacharyya A. Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability. AAPS PharmSciTech. 2019;20:1–5.

    Google Scholar 

  49. Pandita D, Ahuja A, Lather V, Benjamin B, Dutta T, Velpandian T, et al. Development of lipid-based nanoparticles for enhancing the oral bioavailability of paclitaxel. AAPS PharmSciTech. 2011;12:712–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dwivedi P, Khatik R, Khandelwal K, Taneja I, Raju KSR, Paliwal SK, et al. Pharmacokinetics study of arteether loaded solid lipid nanoparticles: an improved oral bioavailability in rats. Int J Pharm. 2014;466:321–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all colleagues and staff members in the Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences.

Funding

This work was supported financially (Grant No. 980120168) by the Hamadan University of Medical Sciences, Hamadan, Iran. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Mahboobian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazem, Z., Firoozian, F., Khodabandelou, S. et al. Systematic Optimization of Solid Lipid Nanoparticles of Silybin for Improved Oral Drug Delivery by Box-Behnken Design: In Vitro and In Vivo Evaluations. J Pharm Innov 18, 472–484 (2023). https://doi.org/10.1007/s12247-022-09637-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-022-09637-x

Keywords

Navigation