Skip to main content
Log in

Tuning the Electronic Properties of Carbon-Doped Double-Walled Boron Nitride Nanotubes: Density Functional Theory

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

This work evaluates the effect of doping on pristine double-walled boron nitride nanotube in different doping positions. We implemented density functional theory to investigate the electronic properties of doped double-walled boron nitride nanotubes. To cover all possible doping positions, ten different doping cases were included. We noticed that the electronic properties of double-walled boron nitride nanotubes crucially depend on doping site, whether the carbon atom replaced the boron or nitrogen atom and the dopant concentration as well. In addition, doping the double-walled boron nitride nanotube creates deformation in the nanotube structure. Such structural deformation as well as inter-wall interaction directly affects the electronic properties of the nanostructure. Different band gap values were obtained in such away insulator-semiconductor phase transition as well as insulator-narrow gap semiconductor phase transition were achieved. For instance, when nitrogen atom replaced by carbon atom in inner wall the obtained band gap values was 0.338 eV, however, when boron atom replaced by carbon atom in inner wall the obtained band gap value was 2.030 eV. Such band gap variations will be suitable for different electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. Cho, J. H. Kim, J. H. Hwang, et al., Sci Rep. 10, 7416 (2020). https://doi.org/10.1038/s41598-020-64096-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A. L. Ivanovskii, Russ. J. Inorg Chem. 53, 2083 (2008). https://doi.org/10.1134/s0036023608140015

    Article  Google Scholar 

  3. H. Pan, Y. P. Feng, and J. Lin, Nanotechnology 19, 095707 (2008). https://doi.org/10.1088/0957-4484/19/9/095707

    Article  CAS  PubMed  Google Scholar 

  4. J. A. Talla, Chem. Phys. 392, 71 (2012). https://doi.org/10.1016/j.chemphys.2011.10.014

    Article  CAS  Google Scholar 

  5. J. A. Talla, Physica B: Cond. Matter. 407, 966 (2012). https://doi.org/10.1016/j.physb.2011.12.120

    Article  CAS  Google Scholar 

  6. C. Shen, A. H. Brozena, and Y. Wang, Nanoscale 3, 503 (2011). https://doi.org/10.1039/c0nr00620c

    Article  CAS  PubMed  Google Scholar 

  7. M. Serhan, M. Abusini, E. Almahmoud, et al., Comp. Cond. Matter. 22, e00439 (2020). https://doi.org/10.1016/j.cocom.2019.e00439

    Article  Google Scholar 

  8. E. Brito, T. S. Silva, T. Guerra, et al., Physica E 95, 125 (2018). https://doi.org/10.1016/j.physe.2017.09.019

    Article  CAS  Google Scholar 

  9. R. Ansari, S. Ajori, and A. Ameri, Appl. Surf. Sci. 366, 233 (2016). https://doi.org/10.1016/j.apsusc.2016.01.098

    Article  CAS  Google Scholar 

  10. Z.-H. Zhang, W.-L. Guo, and B. I. Yakobson, Acta Mech. Sin. 28, 1532 (2012). https://doi.org/10.1007/s10409-012-0163-y

    Article  CAS  Google Scholar 

  11. J. A. Talla, E. A. Almahmoud, K. Al-Khaza’leh, and H. Abu-Farsakh, Semiconductors 55, 585 (2021). https://doi.org/10.1134/S1063782621070198

    Article  Google Scholar 

  12. P. N. D’yachkov and D. V. Makaev, J. Phys. Chem. Solids 70, 180 (2009). https://doi.org/10.1016/j.jpcs.2008.10.002

    Article  CAS  Google Scholar 

  13. A. Y. Golovacheva and P. N. D’yachkov, J. Exp. Theor. Phys. Lett. 82, 737 (2005). https://doi.org/10.1134/1.2171730

    Article  CAS  Google Scholar 

  14. J. Kongsted, A. Osted, L. Jensen, et al., J. Phys. Chem. B 105, 10243 (2001). https://doi.org/10.1021/jp0121724

    Article  CAS  Google Scholar 

  15. G. Y. Guo and J. C. Lin, Phys. Rev. B 71, 165402 (2005). https://doi.org/10.1103/PhysRevB.71.165402

    Article  CAS  Google Scholar 

  16. G. Y. Guo and J. C. Lin, Phys. Rev. B 72, 075416 (2005). https://doi.org/10.1103/PhysRevB.72.075416

    Article  CAS  Google Scholar 

  17. L. Wang, J. Lu, L. Lai, et al., J. Phys. Chem. C 111, 3285 (2007). https://doi.org/10.1021/jp065644t

    Article  CAS  Google Scholar 

  18. H.-P. Lan, L.-H. Ye, S. Zhang, et al., Appl. Phys. Lett. 94, 18 (2009). https://doi.org/10.1063/1.3129170

    Article  CAS  Google Scholar 

  19. M. Ferrabone, B. Kirtman, M. Rérat, et al., Phys. Rev. B 83, 23 (2011). https://doi.org/10.1103/PhysRevB.83.235421

    Article  CAS  Google Scholar 

  20. R. Orlando, R. Bast, K. Ruud, et al., J. Phys. Chem. A 115, 12631 (2011). https://doi.org/10.1021/jp203237m

    Article  CAS  PubMed  Google Scholar 

  21. M. Ferrabone, B. Kirtman, V. Lacivita, et al., Int. J. Quantum Chem. 112, 2160 (2012). https://doi.org/10.1002/qua.23160

    Article  CAS  Google Scholar 

  22. A. Mohajeri and A. Omidvar, J. Phys. Chem. C 118, 1739 (2014). https://doi.org/10.1021/jp410932a

    Article  CAS  Google Scholar 

  23. S. V. Boroznin, I. V. Zaporotskova, E. V. Boroznina, and D. I. Polikarpov, Russ. J. Gen. Chem. 83, 1580 (2013). https://doi.org/10.1134/s1070363213080173

    Article  CAS  Google Scholar 

  24. A. Sebetci, E. Mete, and I. Boustani, J. Phys. Chem. Solids 69, 2004 (2008). https://doi.org/10.1016/j.jpcs.2008.02.014

    Article  CAS  Google Scholar 

  25. M. Abuokaz, K. Al-khaza’leh, and J. A. Talla, Appl. Phys. A 128, 40 (2022). https://doi.org/10.1007/s00339-021-05181-6

    Article  CAS  Google Scholar 

  26. V. Choyal and S. I. Kundalwal, Nanotechnology 31, 395707 (2020). https://doi.org/10.1088/1361-6528/ab9865

    Article  CAS  PubMed  Google Scholar 

  27. H. Liu, G. Zhou, Q. Yan, et al., Phys. Rev. B 75, 12 (2007). https://doi.org/10.1103/PhysRevB.75.125410

    Article  CAS  Google Scholar 

  28. P. N. D’yachkov, Russ. J. Inorg. Chem. 66, 852 (2021). https://doi.org/10.1134/s0036023621060085

    Article  CAS  Google Scholar 

  29. L. S. Nechaeva, E. V. Butyrskaya, and S. A. Zapryagaev, Russ. J. Gen. Chem. 86, 1684 (2016). https://doi.org/10.1134/s1070363216070252

    Article  CAS  Google Scholar 

  30. R. Omari, J. Talla, H. Abu-Farsakh, and K. Al-Khaza’leh, Comput. Cond. Matter. 30, e00624 (2022). https://doi.org/10.1016/j.cocom.2021.e00624

    Article  Google Scholar 

  31. E. A. Almahmoud, J. A. Talla and H. Abu-Farsakh, Mater. Res. Exp. 6, 115617 (2019). https://doi.org/10.1088/2053-1591/ab4e28

    Article  Google Scholar 

  32. E. Almahmoud and J. A. Talla, Mater. Res. Express. 6, 105038 (2019). https://doi.org/10.1088/2053-1591/ab39a3

    Article  CAS  Google Scholar 

  33. J. A. Talla and A. A. Ghozlan, Chin. J. Phys. 56, 740 (2018). https://doi.org/10.1016/j.cjph.2018.01.009

    Article  CAS  Google Scholar 

  34. J. A. Talla, Comp. Cond. Matter. 15, 25 (2018). https://doi.org/10.1016/j.cocom.2018.03.005

    Article  Google Scholar 

  35. J. Talla, M. Abusini, K. Khazaeleh, et al. Mater. Exp. 7, 516 (2017). https://doi.org/10.1166/mex.2017.1402

    Article  CAS  Google Scholar 

  36. J. A. Talla, S. Salman, H. Sabbah, et al., Nanosci. Nano-techn. Lett. 7, 500 (2015). https://doi.org/10.1166/nnl.2015.1994

    Article  Google Scholar 

  37. J. A. Talla, Appl. Phys. A 127, 8 (2021). https://doi.org/10.1007/s00339-021-04751-y

    Article  CAS  Google Scholar 

  38. J. A. Talla, Semiconductors 54, 40 (2020). https://doi.org/10.1134/S1063782620010236

    Article  CAS  Google Scholar 

  39. A. Al-Sharif, E. Almahmoud, J. Talla, et al., Comput. Cond. Matter. 25, e00513 (2020). https://doi.org/10.1016/j.cocom.2020.e00513

    Article  Google Scholar 

  40. E. A. Almahmoud, J. A. Talla, and H. Abu-Farsakh, Semicon. Sci. Tech. 35, 025014 (2020). https://doi.org/10.1088/1361-6641/ab5ece

    Article  CAS  Google Scholar 

  41. J. A. Talla, Comp. Cond. Matter. 19, e00378 (2019). https://doi.org/10.1016/j.cocom.2019.e00378

    Article  Google Scholar 

  42. M. Nairata and J. Talla, Phys. Solid State 61, 1896 (2019). https://doi.org/10.1134/S1063783419100421

    Article  Google Scholar 

  43. S.-H. Jhi, D. J. Roundy, S. G. Louie, and M. L. Cohen, Solid State Commun. 134, 397 (2005). https://doi.org/10.1016/j.ssc.2005.02.007

    Article  CAS  Google Scholar 

  44. J. A. Talla, Adv. Sci, Eng. Med. 11, 5 (2019). https://doi.org/10.1166/asem.2019.2382

    Article  CAS  Google Scholar 

  45. R. Omari, E. Almahmoud, J. A. Talla, et al., Fullerenes, Nanotubes Carbon Nanostruct. 28, 828 (2020). https://doi.org/10.1080/1536383X.2020.1768529

    Article  CAS  Google Scholar 

  46. D. Garcia-Toral, M. Gonzalez-Melchor, J. F. Rivas-Silva, et al., J. Phys. Chem. B 122, 5885 (2018). https://doi.org/10.1021/acs.jpcb.8b00116

    Article  CAS  PubMed  Google Scholar 

  47. K. Al-Khaza’leh, E. A. Almahmoud, and J. A. Talla, Chin. J. Phys. 68, 204 (2020). https://doi.org/10.1016/j.cjph.2020.09.010

    Article  CAS  Google Scholar 

  48. J. A. Talla, E. A. Almahmoud, and H. Abu-Farsakh, Semiconductors 55, 902 (2021). https://doi.org/10.1134/S1063782621080182

    Article  Google Scholar 

  49. R. Arenal, M. Kociak, A. Loiseau, and D. J. Miller, Appl. Phy. Lett. 89, 7 (2006). https://doi.org/10.1063/1.2335379

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Talla.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talla, J.A., Al-Khaza’leh, K. & Omar, N. Tuning the Electronic Properties of Carbon-Doped Double-Walled Boron Nitride Nanotubes: Density Functional Theory. Russ. J. Inorg. Chem. 67, 1025–1034 (2022). https://doi.org/10.1134/S0036023622070178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622070178

Keywords:

Navigation