Skip to main content
Log in

Novel Synthesis and Structural Investigations of ZnSO4/MgCl2 Composite Hydrated Salt for Enhanced Thermochemical Heat Storage Applications

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Thermochemical materials MgCl2 and ZnSO4 have been investigated in depth on larger energy density, chemical stability and larger dehydration/hydration output in view of space heat application. The selection of these materials was based on a recent review on all possible salt hydrates, within the frame of a thermochemical heat storage density and considering current advances in heat storage application. ZnSO4⋅7H2O and MgCl2⋅6H2O were robust with a specific mixing ratio which upgrade materials to a new level of energy. The as-prepared composites significantly improved cyclability, heat of absorption and desorption. The study suggested that hydration/dehydration performance of Zm2 composite shows promising ability among various mixing composites ratios. The TG-DSC result highlighted that compare with pure ZnSO4 and MgCl2, heat storage performance of derived Zm2 40 and 53% increased, respectively. Moreover, among these thermochemical materials, cyclability test of Zm2 composite showed a promising result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Z. Bai, Q. Liu, J. Lei, et al., Appl. Energy 217, 65 (2018). https://doi.org/10.1016/j.apenergy.2018.02.101

    Article  CAS  Google Scholar 

  2. R. Bayon and E. Rojas, Int. J. Energy Res. 43, 6541(2019). https://doi.org/10.1002/er.4589

    Article  Google Scholar 

  3. A. Chaudhary, A. Kumar, and A. Yadav, J. Renewable Sustain. Energy 5, 023107 (2013) https://doi.org/10.1063/1.4794962

    Article  CAS  Google Scholar 

  4. S. Tursunbadalov and L. A Cisternas, Russ. J. Inorg. Chem. 66, 1936 (2021). https://doi.org/10.1134/S0036023621130064

    Article  CAS  Google Scholar 

  5. P. Donkers, L. Pel, and O. Adan, J. Energy Storage 5, 32 (2016). https://doi.org/10.1016/j.est.2015.11.005

    Article  Google Scholar 

  6. C. Ferchaud, H. Zondag, J. Veldhuis, et al., J. Phys. Conf. Series (2021).https://doi.org/10.1088/1742-6596/395/1/012069

  7. D. Fernandes, F. Pitié, G. Cáceres, et al., Energy 39, 257 (2012). https://doi.org/10.1016/j.energy.2012.01.024

    Article  CAS  Google Scholar 

  8. G. Habashy and G. Kolta, J. Inorg. Nuclear Chem. 34, 67 (1972). https://doi.org/10.1016/0022-1902(72)80361-0

    Article  Google Scholar 

  9. G. Li, B. Zhang, X. Li, et al., Sol. Energy Mater. Sol. Cells 126, 55 (2014). https://doi.org/10.3390/molecules24020363

    Article  CAS  Google Scholar 

  10. S. Li, H. Huang, X. Yang, Y. et al., Thermal Eng. 128, 711 (2018). https://doi.org/10.1016/j.applthermaleng.2017.09.050

    Article  CAS  Google Scholar 

  11. A. P. Maltsev, and O. P. Charkin, Russ. J. Inorg. Chem. 66, 1860 (2021). https://doi.org/10.1134/S0036023621120111

    Article  CAS  Google Scholar 

  12. V. Mamani, A. Gutiérrez, and S. Ushak, Sol. Energy Mater. Sol. Cells 176, 356 (2018). https://doi.org/10.1016/j.solmat.2017.10.021

    Article  CAS  Google Scholar 

  13. Y. E. Milian, S. Ushak, L. F. Cabeza, et al., Sol. Energy Mater. Sol. Cells 208, 110344 (2020). https://doi.org/10.1016/j.solmat.2019.110344

  14. K. E. N’tsoukpoe, H. Liu, N. Le Pierrès, and L. Luo, Renewable Sustain. Energy Rev. 13, 2396 (2009). https://doi.org/10.1016/j.energy.2011.11.020

    Article  CAS  Google Scholar 

  15. M. K. Nejhad and D. Aydin, Energy Sources Part A–Recovery Utilization and Environmental Effects (2019). https://doi.org/10.1080/15567036.2019.1666187

  16. A. D. Pathak, I. Tranca, S. V. Nedea, et al., J. Phys. Chem. C 121, 20590 (2017). https://doi.org/10.1021/acs.jpcc.7b05245

    Article  CAS  Google Scholar 

  17. R. Pilar, L. Svoboda, P. Honcova, et al., Thermochim. Acta 546, 86 (2012). https://doi.org/10.1016/j.tca.2012.07.021

    Article  CAS  Google Scholar 

  18. H. U. Rammelberg, T. Osterland, B. Priehs, et al., Sol. Energy 136, 589 (2016). https://doi.org/10.1016/j.solener.2016.07.016

    Article  CAS  Google Scholar 

  19. A. P. Maltsev and O. P. Charkin, Russ. J. Inorg. Chem. 65, 1204 (2020). https://doi.org/10.1134/S0036023620080100

    Article  Google Scholar 

  20. A. U. Rehman, A. Hayat, A. Munis, et al., Energy 173, 60 (2020). https://doi.org/10.1680/jener.19.00018

    Article  Google Scholar 

  21. A. U. Rehman, M. Khan, and Z. Maosheng, J. Energy Storage 26, 101026 (2019). https://doi.org/10.1016/j.est.2019.101026

    Article  Google Scholar 

  22. A. U. Rehman, M. Khan, Z. Maosheng, et al., Heat Mass Transfer 57, 765 (2020). https://doi.org/10.1007/s00231-020-02990-y

    Article  CAS  Google Scholar 

  23. A. Sharma, V. V. Tyagi, C. Chen, et al., Renewable Sustain. Energy Rev. 13, 345 (2009). https://doi.org/10.1016/j.rser.2007.10.005

    Article  CAS  Google Scholar 

  24. R. J. Sutton, E. Jewell, J. Elvins, et al., Energy Build. 162, 120 (2018). https://doi.org/10.1016/j.enbuild.2017.11.068

    Article  Google Scholar 

  25. A. Ur Rehman, Z. Maosheng, and A. Hayat, Int. J. Energy Research 44, 281 (2020). https://doi.org/10.1002/er.4910

    Article  CAS  Google Scholar 

  26. Q. Wang, Y. Xie, B. Ding, et al., Sol. Energy Materials Sol. Cells 200, 110047 (2019). https://doi.org/10.1016/j.solmat.2019.110047

    Article  CAS  Google Scholar 

  27. G. T. Whiting, D. Grondin, D. Stosic, et al., Sol. Energy Materials Sol. Cells 128, 295 (2014). https://doi.org/10.1016/j.solmat.2014.05.016

    Article  CAS  Google Scholar 

  28. J. Xu, T. Li, T. Yan, J. Chao, et al., Sol. Energy Materials Sol. Cells 219, 110819 (2021). https://doi.org/10.1016/j.solmat.2020.110819

    Article  CAS  Google Scholar 

  29. J. Xu, R. Wang and Y. Li, Sol. Energy 103, 638 (2014). https://doi.org/10.1016/j.solener.2013.06.006

    Article  CAS  Google Scholar 

  30. H. Zhou and D. Zhang, Sol. Energy 103, 610 (2014). https://doi.org/10.1016/j.solener.2013.06.006

    Article  CAS  Google Scholar 

  31. H. Zondag, B. Kikkert, S. Smeding, et al., Sol. Energy 184, 202 (2019). https://doi.org/10.1016/j.solener.2019.03.076

    Article  CAS  Google Scholar 

  32. W. Chen, W. Li, and Y. Zhang, Appl. Thermal Eng. 135, 95 (2018). https://doi.org/10.1016/j.applthermaleng.2018.02.043

    Article  CAS  Google Scholar 

Download references

Funding

This research has been Financially Supported for the Postdoctoral study by the Shaanxi Province and Natural Science Foundation of China, grant no. 2016JQ5108. We are also very thankful to the School of Materials Science and Engineering, Northwestern Polytechnical University and Northwest University Xian, P.R. of China for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Khan or M. Zheng.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.R., Khan, M., Rehman, A.U. et al. Novel Synthesis and Structural Investigations of ZnSO4/MgCl2 Composite Hydrated Salt for Enhanced Thermochemical Heat Storage Applications. Russ. J. Inorg. Chem. 67, 1125–1134 (2022). https://doi.org/10.1134/S0036023622070129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622070129

Keywords:

Navigation