Skip to main content
Log in

Uranium(VI) Sorption from Liquid Waste Solution Using Functionalized Polyurethane Polymer: Kinetic and Isotherm Characterizations

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The removal of hazardous metal ions from liquid waste effluents is very important for water as well as environmental security. In this regard, this article discusses the adsorption of hexavalent uranium U(VI) from aqueous solutions onto polyether type polyurethane foam in detail (PUF). SEM and FTIR measurements were used to characterize PUF prior to and after U(VI) adsorption, and batch-type experiments were used to investigate the effect of various parameters on adsorption efficiency, including pH, metal-ion concentration, temperature, and contact time. The sorption experimental data have been described well with pseudo-second-order kinetic mathematical equations. The Langmuir isotherm model accurately described the equilibrium process which declare that the uranium sorption is monolayer and homogeneous process. The sorption capacity of conventional polyurethane foam was 26.3 mg g–1. Nitric acid (0.1 M) has been applied effectively for the desorption of U(VI) from the loaded sorbent. PUF material exhibit stable performance for five cycles of sorption/ desorption processes. The displayed results demonstrate that PUF may be used as a proper material for uranium sorption from real matrix samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Poumadère, R. Bertoldo, and J. Samadi, Public Perceptions and Governance of Controversial Technologies to Tackle Climate Change: Nuclear Power, Carbon Capture and Storage, Wind, and Geoengineering (Wiley Interdisciplinary Reviews: Climate Change, Wiley-Blackwell, 2011). https://doi.org/10.1002/wcc.134

  2. S. J. Morrison and R. R. Spangler, Environ. Sci. Technol. 26, 1922 (1992). https://doi.org/10.1021/es00034a007

    Article  CAS  Google Scholar 

  3. World Health Organization (WHO), Depleted Uranium: Sources, Exposure, and Health Effects (WHO, Geneva, 2001).

    Google Scholar 

  4. E. K. Papynov, A. N. Dran’kov, I. A Tkachenko, et al., Russ. J. Inorg. Chem. 65, 820 (2020). https://doi.org/10.1134/S0036023620060157

    Article  CAS  Google Scholar 

  5. K. A. Kuliev, A. Z. Zalov, N. A.Verdezade, et al., Russ. J. Inorg. Chem. 64, 1522 (2019). https://doi.org/10.1134/S0036023619120076

    Article  CAS  Google Scholar 

  6. O. V. Nipruk, K. A. Klinshova, G. N. Chernorukov, et al., Russ J Gen Chem 91, 440 (2021). https://doi.org/10.1134/S1070363221030130

    Article  CAS  Google Scholar 

  7. Y. Sun, D. Shao, C. Chen, S, et al. Environ. Sci., Technol. 47, 9904 (2013). https://doi.org/10.1021/es401174n

    Article  CAS  Google Scholar 

  8. A. N. Turanov, V. K. Karandashev, D. V. Baulin, et al., Russ. J. Gen. Chem. 90, 1012 (2020). https://doi.org/10.1134/S1070363220060122

    Article  CAS  Google Scholar 

  9. T. O. Kozlova, A. E. Baranchikov, and V. K. Ivanov, Russ. J. Inorg. Chem. 66, 1761 (2021). https://doi.org/10.1134/S003602362112010X

    Article  CAS  Google Scholar 

  10. O.I Artyushin, A. V. Vologzhanina, and V. K. Brel, Russ. J. Gen. Chem. 91, 750 (2021). https://doi.org/10.1134/S1070363221040289

    Article  CAS  Google Scholar 

  11. I. V. Ershova and A. V. Piskunov, Russ. J. Coord. Chem. 46, 15 (2020) https://doi.org/10.1134/S1070328420030021

    Article  Google Scholar 

  12. J. R. Bargar, R. Reitmeyer, and J. A. Davis, Environ. Sci. Technol. 33, 2481 (1999). https://doi.org/10.1021/es990048g

    Article  CAS  Google Scholar 

  13. S. Xu et al., J. Nanosci. Nanotechnol. 16, 3122 (2016) https://doi.org/10.1166/jnn.2016.12411

    Article  CAS  PubMed  Google Scholar 

  14. A. Massoud, A. M. Masoud, W. M. Youssef, J. Radioanal. Nucl. Chem. 322, 1065 (2019). https://doi.org/10.1007/s10967-019-06770-9

    Article  CAS  Google Scholar 

  15. A. E. M. Hussein and M. H. Taha, J. Radioanal. Nucl. Chem. 295, 709 (2013). https://doi.org/10.1007/s10967-012-2158-3

    Article  CAS  Google Scholar 

  16. A. M. Masoud, M. Saeed, M. H. Taha, M. M. El-Maadawy, Egypt. J. Chem. 63, 721 (2020). https://doi.org/10.21608/ejchem.2019.13638.1843

    Article  Google Scholar 

  17. O. A. Pshenko, M. Y. Arsentiev, L. N. Kurylenko, and T. V. Antropova, Glass Phys. Chem. 47, 446 (2021). https://doi.org/10.1134/S1087659621050126

    Article  CAS  Google Scholar 

  18. M. M. Shehataa, W. M. Youssef, H. H. Mahmoud, and A. M. Masoud, Russ. J. Inorg. Chem. 65,279–289 (2020). https://doi.org/10.1134/S0036023620020163

    Article  Google Scholar 

  19. J. Zhu et al., ACS Appl. Mater. Interfaces 10, 28877 (2018). https://doi.org/10.1021/acsami.8b09022

    Article  CAS  PubMed  Google Scholar 

  20. H. Liu et al., Environ. Sci. Technol. 51, 9227 (2017). https://doi.org/10.1021/acs.est.7b02431

    Article  CAS  PubMed  Google Scholar 

  21. H. J. M. Bowen, J. Chem. Soc. A Inorganic, Phys. Theor. Chem. 1082 (1970) https://doi.org/10.1039/J19700001082

  22. T. Braun, Z. Anal. Chem. 314, 652 (1983) https://doi.org/10.1007/BF00487351

    Article  CAS  Google Scholar 

  23. C. Teodosiu, R. Wenkert, L. Tofan, and C. Paduraru, Rev. Chem. Eng. 30, 403 (2014). https://doi.org/10.1515/revce-2013-0036

    Article  CAS  Google Scholar 

  24. A. E. M. Hussein, W. M. Youssef, M. H. Taha, and M. M. El-Maadawy, Arab. J. Nucl. Sci. Appl. 50, 156 (2017).

    Google Scholar 

  25. M. M. Saeed and R. Ahmad, Radiochim. Acta 93, 333 (2005). https://doi.org/10.1524/ract.93.6.333.65646

    Article  CAS  Google Scholar 

  26. S. G. Dmitrienko and Y. A. Zolotov, Russ. Chem. Rev. 71, 159 (2002). https://doi.org/10.1070/RC2002v071n02ABEH000703

    Article  CAS  Google Scholar 

  27. D. Xue, H. Wang, Y. Liu, P. Shen, and J. Sun, Anal. Methods 8, 29 (2016). https://doi.org/10.1039/c5ay01737h

    Article  CAS  Google Scholar 

  28. Z. Marczenko, M. Balcerzak, in Separation, Preconcentration and Spectrophotometry in Inorganic Analysis (Elsevier, 2000).

    Google Scholar 

  29. I. Puigdomenech, HYDRA (Hydrochemical Equilibrium-Constant Database) and MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms) Programs (Royal Institute of Technology, Sweden, Scientific Research Publishing).

  30. A. Belgacem, R. Rebiai, H. Hadoun, S. Khemaissia, and M. Belmedani, Environ. Sci. Pollut. Res. 21, 684 (2014). https://doi.org/10.1007/s11356-013-1940-2

    Article  CAS  Google Scholar 

  31. T. F. Hassanein, A. M. Masoud, W. S. Mohamed, M. H. Taha, and E. Guibal, J. Environ. Chem. Eng. 9, 104731 (2021). https://doi.org/10.1016/j.jece.2020.104731

    Article  CAS  Google Scholar 

  32. G. Tian et al., J. Hazard. Mater., 190, 442 (2011). https://doi.org/10.1016/j.jhazmat.2011.03.066

    Article  CAS  PubMed  Google Scholar 

  33. H. J. Kang and J. H. Kim, Biotechnol. Bioprocess Eng. 24, 513 (2019). https://doi.org/10.1007/s12257-019-0001-1

    Article  CAS  Google Scholar 

  34. L. Largitte and R. Pasquier, Chem. Eng. Res. Des. 109, 495 (2016). https://doi.org/10.1016/j.cherd.2016.02.006

    Article  CAS  Google Scholar 

  35. Y. Zhu, J. Hu, and J. Wang, Prog. Nucl. Energy 71, 172 (2014). https://doi.org/10.1016/j.pnucene.2013.12.005

    Article  CAS  Google Scholar 

  36. F. C. Wu, R. L. Tseng, and R. S. Juang, Chem. Eng. J. 153, 1 (2009). https://doi.org/10.1016/j.cej.2009.04.042

    Article  CAS  Google Scholar 

  37. M. H. Taha, Sep. Sci. Technol. 56, 1562 (2021). https://doi.org/10.1080/01496395.2020.1787446

    Article  CAS  Google Scholar 

  38. A. M. A. El Naggar, M. M. Ali, S. A. Abdel Maksoud, M. H. Taha, A. S. Morshedy, and A. A. Elzoghby, J. Radioanal. Nucl. Chem. 320, 741 (2019). https://doi.org/10.1007/s10967-019-06529-2

    Article  CAS  Google Scholar 

  39. M. Wang et al., J. Macromol. Sci. Part A Pure Appl. Chem. 52, 105 (2015). https://doi.org/10.1080/10601325.2015.980745

    Article  CAS  Google Scholar 

  40. J. Song Wang, X. Jiang Hu, Y. Guo Liu, S. Bo Xie, and Z. Lei Bao, J. Environ. Radioact. 101, 504 (2010). https://doi.org/10.1016/j.jenvrad.2010.03.002

  41. K. Y. Foo and B. H. Hameed, Chem. Eng. J. 156, 2 (2010). https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  42. W. M. Youssef, Chem. Eng. Process. Technol. 8, 4 (2017). https://doi.org/10.4172/2157-7048.1000349

    Article  Google Scholar 

  43. International Nuclear Atlantic Conference INAC 2009, Rio de Janeiro, RJ, Brazil, September 27 to October 2, 2009, Associação Brasileira De Energia Nuclear– Aben.

  44. M. Nuhanović, M. Grebo, S. Draganović, M. Memić, and N. Smječanin, J. Radioanal. Nucl. Chem. 322, 2065 (2019). https://doi.org/10.1007/s10967-019-06877-z

    Article  CAS  Google Scholar 

  45. L. Li, D. Ding, N. Hu, P. Fu, X. Xin, and Y. Wang, J. Radioanal. Nucl. Chem. 299, 681 (2014). https://doi.org/10.1007/s10967-013-2769-3

    Article  CAS  Google Scholar 

  46. R. I. Foster, J. T. M. Amphlett, K. W. Kim, T. Kerry, K. Lee, and C. A. Sharrad, J. Ind. Eng. Chem. 81, 144 (2020). https://doi.org/10.1016/j.jiec.2019.09.001

    Article  CAS  Google Scholar 

  47. P. Saha and S. Chowdhury, in Thermodynamics (InTech, 2011).

    Google Scholar 

  48. A. M. Masoud, Int. J. Environ. Anal. Chem. (2020) https://doi.org/10.1080/03067319.2020.1763974

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Youssef.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssef, W.M., Hussein, A.E., Taha, M.H. et al. Uranium(VI) Sorption from Liquid Waste Solution Using Functionalized Polyurethane Polymer: Kinetic and Isotherm Characterizations. Russ. J. Inorg. Chem. 67, 1058–1068 (2022). https://doi.org/10.1134/S0036023622070245

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622070245

Keywords:

Navigation