Skip to main content
Log in

Enhanced Macroporous Cationic Chitosan Hydrogel by Freezing and Thawing Method with Superadsorption Capacity for Anionic Dyes

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, we have developed a simple technique to prepare cationic chitosan hydrogel with interconnected porous structure using freeze–thaw process and the obtained hydrogel was named FCS hydrogel. Scanning electron microscopy (SEM) imaging discovered that the synthesized hydrogel demonstrated interconnected porous structure in the scope of 5–20 μm. We also showed that the FCS hydrogel exhibits pH responsiveness behavior, and demonstrated reversible swelling and de-swelling behaviors maintaining their mechanical stability. We demonstrate that the FCS hydrogel swelling capacity decreased at alkaline pH and rose with a decline in pH value. Besides, the FCS hydrogel presented specific surface area of 78.25 ± 8.75 m2 g−1, due to the cryogenic treatment of glutaraldehyde cross-linked chitosan hydrogel could increase the surface area and permeability of composite hydrogel and then strongly increasing the adsorption capacity. Subsequently, the FCS monolithic hydrogel tested dyes removal, which provides a high removal efficiency towards anionic dyes including congo red (CR) and sodium fluorescein (SFL) dyes. Significantly, we show that the FCS hydrogel could be regenerated and reused as an adsorbent for wastewater treatment without significant loss of pollutants removal efficiency over a number of adsorption and washing cycles. This study offers a promising environmental friendly and sustainable interconnected porous hydrogel for anionic dye removal from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhao J, Yin J, Zhong J et al (2019) Facile preparation of a self-assembled artemia cyst shell–TiO2–MoS2 porous composite structure with highly efficient catalytic reduction of nitro compounds for wastewater treatment. Nanotechnology 31:85603

    Article  CAS  Google Scholar 

  2. Wang C, Yin J, Han S et al (2019) Preparation of palladium nanoparticles decorated polyethyleneimine/polycaprolactone composite fibers constructed by electrospinning with highly efficient and recyclable catalytic performances. Catalysts 9:559

    Article  CAS  Google Scholar 

  3. Binaeian E, Zadvarzi SB, Yuan D (2020) Anionic dye uptake via composite using chitosan-polyacrylamide hydrogel as matrix containing TiO2 nanoparticles; comprehensive adsorption studies. Int J Biol Macromol 162:150–162

    Article  CAS  PubMed  Google Scholar 

  4. Islam MA (2020) Synthesis of manganite (γ− MnOOH) for the adsorptive degradation of methylene blue (MB) and orange green (OG) from aqueous solution. Cell 1818:482533

    Google Scholar 

  5. Kapoor RT, Danish M, Singh RS et al (2021) Exploiting microbial biomass in treating azo dyes contaminated wastewater: mechanism of degradation and factors affecting microbial efficiency. J Water Process Eng 43:102255

    Article  Google Scholar 

  6. Demirbas A (2009) Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J Hazard Mater 167:1–9. https://doi.org/10.1016/j.jhazmat.2008.12.114

    Article  CAS  PubMed  Google Scholar 

  7. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal a review. J Environ Manage 90:2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017

    Article  CAS  PubMed  Google Scholar 

  8. Vashi H, Iorhemen OT, Tay JH (2017) Aerobic granulation: a recent development on the biological treatment of pulp and paper wastewater. Environ Technol Innov 9:265–274

    Article  Google Scholar 

  9. An B, Choi J (2019) An experimental application of four types of chitosan bead for removal of cationic and anionic pollutants. Water Air Soil Pollut. https://doi.org/10.1007/s11270-019-4365-9

    Article  Google Scholar 

  10. Mezohegyi G, van der Zee FP, Font J et al (2012) Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon. J Environ Manage 102:148–164. https://doi.org/10.1016/j.jenvman.2012.02.021

    Article  CAS  PubMed  Google Scholar 

  11. Halbus AF, Athab ZH, Hussein FH (2021) Review on preparation and characterization of activated carbon from low cost waste materials. Egypt J Chem 64:7255–7268

    Google Scholar 

  12. Hussein FH, Halbus AF, Lafta AJ, Athab ZH (2015) Preparation and characterization of activated carbon from iraqi khestawy date palm. J Chem. https://doi.org/10.1155/2015/295748

    Article  Google Scholar 

  13. Zahraa HA (2015) Production and characterization of activated carbon from iraqi palm fiber. Asian J Chem 27:3658–3662

    CAS  Google Scholar 

  14. Halbus AF, Athab ZH, Hussein FH (2013) Adsorption of disperse blue dye on Iraqi date palm seeds activated carbon. Int J Chem Sci 11:1219–1233

    CAS  Google Scholar 

  15. Ren J, Wang X, Zhao L et al (2021) Effective removal of dyes from aqueous solutions by a gelatin hydrogel. J Polym Environ 29:3497–3508

    Article  CAS  Google Scholar 

  16. Sinha V, Chakma S (2019) Advances in the preparation of hydrogel for wastewater treatment: a concise review. J Environ Chem Eng 7:103295

    Article  CAS  Google Scholar 

  17. Hou N, Wang R, Geng R et al (2019) Facile preparation of self-assembled hydrogels constructed from poly-cyclodextrin and poly-adamantane as highly selective adsorbents for wastewater treatment. Soft Matter 15:6097–6106

    Article  CAS  PubMed  Google Scholar 

  18. Loo S-L, Vásquez L, Athanassiou A, Fragouli D (2021) Polymeric hydrogels—a promising platform in enhancing water security for a sustainable future. Adv Mater Inter 8:2100580. https://doi.org/10.1002/admi.202100580

    Article  Google Scholar 

  19. Weerasundara L, Gabriele B, Figoli A et al (2020) Hydrogels: novel materials for contaminant removal in water—a review. Crit Rev Environ Sci Technol 51:1–45. https://doi.org/10.1080/10643389.2020.1776055

    Article  CAS  Google Scholar 

  20. Kaith BS, Singh A, Sharma AK, Sud D (2021) Hydrogels: synthesis, classification, properties and potential applications—a brief review. J Polym Environ 29:3827–3841

    Article  CAS  Google Scholar 

  21. Yu Y, Cheng Y, Tong J et al (2021) Recent advances in thermo-sensitive hydrogels for drug delivery. J Mater Chem B 9:2979–2992

    Article  CAS  PubMed  Google Scholar 

  22. Qi X, Tong X, Pan W et al (2021) Recent advances in polysaccharide-based adsorbents for wastewater treatment. J Clean Prod 315:128221. https://doi.org/10.1016/j.jclepro.2021.128221

    Article  CAS  Google Scholar 

  23. Hassanzadeh P, Gharbani P, Derakhshanfard F, Maher BM (2021) Preparation and characterization of PVDF/gC 3 N 4/chitosan polymeric membrane for the removal of direct blue 14 dye. J Polym Environ. https://doi.org/10.21203/rs.3.rs-218812/v1

    Article  Google Scholar 

  24. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ostrowska-Czubenko J, Gierszewska M, Pieróg M (2015) pH-responsive hydrogel membranes based on modified chitosan: water transport and kinetics of swelling. J Polym Res 22:1–12

    Article  CAS  Google Scholar 

  26. Galan J, Trilleras J, Zapata PA et al (2021) Optimization of chitosan glutaraldehyde-crosslinked beads for reactive blue 4 anionic dye removal using a Surface response methodology. Life 11:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang X, Chen D, Jiao X (2008) Chitosan-based aerogels with high adsorption performance. J Phys Chem B 112:7721–7725

    Article  CAS  PubMed  Google Scholar 

  28. Bratskaya S, Privar Y, Nesterov D et al (2019) Chitosan gels and cryogels cross-linked with diglycidyl ethers of ethylene glycol and polyethylene glycol in acidic media. Biomacromol 20:1635–1643. https://doi.org/10.1021/acs.biomac.8b01817

    Article  CAS  Google Scholar 

  29. Yang C, Shi X, Qi L et al (2021) Electrical writing induced covalent cross-linking on hydrogel for multidimensional structural information storage. ACS Appl Mater Interfaces 13:36538–36547. https://doi.org/10.1021/acsami.1c09548

    Article  CAS  PubMed  Google Scholar 

  30. Pérez-Calderón J, Santos MV, Zaritzky N (2020) Synthesis, characterization and application of cross-linked chitosan/oxalic acid hydrogels to improve azo dye (Reactive Red 195) adsorption. React Funct Polym 155:104699

    Article  CAS  Google Scholar 

  31. Mathew AP, Laborie M-PG, Oksman K (2009) Cross-linked chitosan/chitin crystal nanocomposites with improved permeation selectivity and pH stability. Biomacromol 10:1627–1632. https://doi.org/10.1021/bm9002199

    Article  CAS  Google Scholar 

  32. Kayan GÖ, Kayan A (2021) Composite of natural polymers and their adsorbent properties on the dyes and heavy metal ions. J Polym Environ. https://doi.org/10.1007/s10924-021-02154-x

    Article  Google Scholar 

  33. Reghioua A, Barkat D, Jawad AH et al (2021) Magnetic chitosan-glutaraldehyde/zinc oxide/Fe 3 O 4 nanocomposite: optimization and adsorptive mechanism of remazol brilliant blue r dye removal. J Polym Environ. https://doi.org/10.1007/s11356-022-20673-5

    Article  Google Scholar 

  34. Tu H, Yu Y, Chen J et al (2017) Highly cost-effective and high-strength hydrogels as dye adsorbents from natural polymers: chitosan and cellulose. Polym Chem 8:2913–2921

    Article  CAS  Google Scholar 

  35. Mahmoodi H, Fattahi M, Motevassel M (2021) Graphene oxide–chitosan hydrogel for adsorptive removal of diclofenac from aqueous solution: preparation, characterization, kinetic and thermodynamic modelling. RSC Adv 11:36289–36304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alves DCS, Goncalves JO, Coseglio BB et al (2019) Adsorption of phenol onto chitosan hydrogel scaffold modified with carbon nanotubes. J Environ Chem Eng 7:103460

    Article  CAS  Google Scholar 

  37. Alves DC, Healy B, Yu T, Breslin CB (2021) Graphene-based materials immobilized within chitosan: applications as adsorbents for the removal of aquatic pollutants. Materials (Basel) 14:3655

    Article  CAS  Google Scholar 

  38. Niu Z, Liu L, Zhang L, Chen X (2014) Porous graphene materials for water remediation. Small 10:3434–3441

    Article  CAS  PubMed  Google Scholar 

  39. da Silva Alves DC, Healy B, Pinto LA et al (2021) Recent developments in chitosan-based adsorbents for the removal of pollutants from aqueous environments. Molecules 26:594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Chatterjee S, Chatterjee T, Lim S-R, Woo SH (2011) Effect of the addition mode of carbon nanotubes for the production of chitosan hydrogel core–shell beads on adsorption of Congo red from aqueous solution. Bioresour Technol 102:4402–4409

    Article  CAS  PubMed  Google Scholar 

  41. Annabi N, Nichol JW, Zhong X et al (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 16:371–383. https://doi.org/10.1089/ten.TEB.2009.0639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xue C, Wilson LD (2021) An overview of the design of chitosan-based fiber composite materials. J Compos Sci 5:160

    Article  CAS  Google Scholar 

  43. Sun S, Tang Y, Fu Q et al (2012) Preparation of agarose/chitosan composite supermacroporous monolithic cryogels for affinity purification of glycoproteins. J Sep Sci 35:893–900

    Article  PubMed  CAS  Google Scholar 

  44. Ho M-H, Kuo P-Y, Hsieh H-J et al (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25:129–138

    Article  CAS  PubMed  Google Scholar 

  45. Quirk RA, France RM, Shakesheff KM, Howdle SM (2004) Supercritical fluid technologies and tissue engineering scaffolds. Curr Opin Solid State Mater Sci 8:313–321

    Article  CAS  Google Scholar 

  46. Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311:515–518

    Article  CAS  PubMed  Google Scholar 

  47. Sornkamnerd S, Okajima MK, Kaneko T (2017) Tough and porous hydrogels prepared by simple lyophilization of LC gels. ACS Omega 2:5304–5314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hwang Y, Sangaj N, Varghese S (2010) Interconnected macroporous poly (ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Tissue Eng Part A 16:3033–3041

    Article  CAS  PubMed  Google Scholar 

  49. Ding Y, Song C, Gong W et al (2021) Robust, sustainable, hierarchical multi-porous cellulose beads via pre-crosslinking strategy for efficient dye adsorption. Cellulose 28:7227–7241

    Article  CAS  Google Scholar 

  50. Luo W, Bai Z, Zhu Y (2018) Fast removal of Co (ii) from aqueous solution using porous carboxymethyl chitosan beads and its adsorption mechanism. RSC Adv 8:13370–13387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Azlan K, Saime WNW, Liew LAI (2009) Chitosan and chemically modified chitosan beads for acid dyes sorption. J Environ Sci 21:296–302

    Article  CAS  Google Scholar 

  52. Pivarčiová L, Rosskopfová O, Galamboš M et al (2016) Sorption of pertechnetate anions on chitosan. J Radioanal Nucl Chem 308:93–98

    Article  CAS  Google Scholar 

  53. Dui J, Zhu G, Zhou S (2013) Facile and economical synthesis of large hollow ferrites and their applications in adsorption for As (V) and Cr (VI). ACS Appl Mater Interfaces 5:10081–10089

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y, Yan W, Sun Z et al (2015) Fabrication of porous zeolite/chitosan monoliths and their applications for drug release and metal ions adsorption. Carbohydr Polym 117:657–665

    Article  CAS  PubMed  Google Scholar 

  55. Song W, Xu J, Gao L et al (2021) Preparation of freeze-dried porous chitosan microspheres for the removal of hexavalent chromium. Appl Sci 11:4217

    Article  CAS  Google Scholar 

  56. Kizilay MY, Okay O (2003) Effect of initial monomer concentration on spatial inhomogeneity in poly (acrylamide) gels. Macromolecules 36:6856–6862

    Article  CAS  Google Scholar 

  57. Nematidil N, Sadeghi M, Nezami S, Sadeghi H (2019) Synthesis and characterization of schiff-base based chitosan-g-glutaraldehyde/NaMMTNPs-APTES for removal Pb2+ and Hg2+ ions. Carbohydr Polym 222:114971

    Article  CAS  PubMed  Google Scholar 

  58. Ostrowska-Czubenko J, Gierszewska-Drużyńska M (2009) Effect of ionic crosslinking on the water state in hydrogel chitosan membranes. Carbohydr Polym 77:590–598

    Article  CAS  Google Scholar 

  59. Roberts GAF, Taylor KE (1989) Chitosan gels, 3. The formation of gels by reaction of chitosan with glutaraldehyde. Die Makromol Chemie Macromol Chem Phys 190:951–960

    Article  CAS  Google Scholar 

  60. Raju L, SCL AR, Prakash NKU, Rajkumar E (2021) Chitosan-terephthaldehyde hydrogels effect of concentration of cross-linker on structural, swelling, thermal and antimicrobial properties. Materialia 16:101082

    Article  CAS  Google Scholar 

  61. Leduc J-F, Leduc R, Cabana H (2014) Phosphate adsorption onto chitosan-based hydrogel microspheres. Adsorpt Sci Technol 32:557–569

    Article  CAS  Google Scholar 

  62. Saïed N, Aïder M (2014) Zeta potential and turbidimetry analyzes for the evaluation of chitosan/phytic acid complex formation. J food Res 3:71

    Article  CAS  Google Scholar 

  63. Boardman SJ, Lad R, Green DC, Thornton PD (2017) Chitosan hydrogels for targeted dye and protein adsorption. J Appl Polym Sci. https://doi.org/10.1002/app.44846

    Article  Google Scholar 

  64. Lone S, Yoon DH, Lee H, Cheong IW (2019) Gelatin–chitosan hydrogel particles for efficient removal of Hg (II) from wastewater. Environ Sci Water Res Technol 5:83–90

    Article  CAS  Google Scholar 

  65. Park H, Park K, Kim D (2006) Preparation and swelling behavior of chitosan-based superporous hydrogels for gastric retention application. J Biomed Mater Res Part A 76:144–150

    Article  CAS  Google Scholar 

  66. Ullah F, Othman MBH, Javed F et al (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433. https://doi.org/10.1016/j.msec.2015.07.053

    Article  CAS  Google Scholar 

  67. Wu M, Chen W, Mao Q et al (2019) Facile synthesis of chitosan/gelatin filled with graphene bead adsorbent for orange II removal. Chem Eng Res Des 144:35–46

    Article  CAS  Google Scholar 

  68. Domard A (1987) Determination of N-acetyl content in chitosan samples by cd measurements. Int J Biol Macromol 9:333–336

    Article  CAS  Google Scholar 

  69. Hameed BH, El-Khaiary MI (2008) Malachite green adsorption by rattan sawdust: isotherm, kinetic and mechanism modeling. J Hazard Mater 159:574–579

    Article  CAS  PubMed  Google Scholar 

  70. Zhao R, Zheng H, Zhong Z et al (2021) Efficient removal of diclofenac from surface water by the functionalized multilayer magnetic adsorbent: kinetics and mechanism. Sci Total Environ 760:144307. https://doi.org/10.1016/j.scitotenv.2020.144307

    Article  CAS  PubMed  Google Scholar 

  71. Wong S, Ghafar NA, Ngadi N et al (2020) Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Sci Rep 10:1–13

    Article  CAS  Google Scholar 

  72. Khraisheh MAM, Al-Ghouti MA, Allen SJ, Ahmad MNM (2004) The effect of pH, temperature, and molecular size on the removal of dyes from textile effluent using manganese oxides-modified diatomite. Water Environ Res 76:2655–2663

    Article  CAS  PubMed  Google Scholar 

  73. Hosseinzadeh H, Ramin S (2018) Effective removal of copper from aqueous solutions by modified magnetic chitosan/graphene oxide nanocomposites. Int J Biol Macromol 113:859–868

    Article  CAS  PubMed  Google Scholar 

  74. Yang S, Zhao F, Sang Q et al (2021) Investigation of 3-aminopropyltriethoxysilane modifying attapulgite for congo red removal: mechanisms and site energy distribution. Powder Technol 383:74–83. https://doi.org/10.1016/j.powtec.2021.01.046

    Article  CAS  Google Scholar 

  75. Kıvanç MR, Ozay O, Ozay H (2020) Ilgin P (2020) Removal of anionic dyes from aqueous media by using a novel high positively charged hydrogel with high capacity. J Dispers Sci Technol. https://doi.org/10.1080/01932691.2020.1847658

    Article  Google Scholar 

  76. Puchana-Rosero MJ, Adebayo MA, Lima EC et al (2016) Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes. Coll Surf A Physicochem Eng Asp 504:105–115

    Article  CAS  Google Scholar 

  77. Pan M, Lin X, Xie J, Huang X (2017) Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano-composites. RSC Adv 7:4492–4500

    Article  CAS  Google Scholar 

  78. Zhou C, Wu Q, Lei T, Negulescu II (2014) Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chem Eng J 251:17–24

    Article  CAS  Google Scholar 

  79. Chiou MS, Li HY (2003) Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50:1095–1105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the College of Science, University of Babylon in Iraq for supporting this research. Z.H.A. and A.F.H. would like to express their acknowledgment to the University of Hull.

Funding

This study was supported by the University of Babylon, Environmental Research and Studies Center and College of Science, Iraq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed F. Halbus.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4092 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athab, Z.H., Halbus, A.F., Abbas, A.S. et al. Enhanced Macroporous Cationic Chitosan Hydrogel by Freezing and Thawing Method with Superadsorption Capacity for Anionic Dyes. J Polym Environ 30, 3815–3831 (2022). https://doi.org/10.1007/s10924-022-02462-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02462-w

Keywords

Navigation