Skip to main content
Log in

Numerical and Analytical Assessment of Finite Rate Chemistry Models for LES of Turbulent Premixed Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Different combustion models for large eddy simulation, including the quasi-laminar (QL), Eddy dissipation concept (EDC), and partially stirred reactor (PaSR) models, are assessed at various filter widths using direct numerical simulation (DNS). The DNS database is lean hydrogen-air turbulent flame across a wide range of Karlovitz numbers (5–239). Overall, the PaSR model performs best, except for small filter width and medium Karlovitz number conditions. The performance of the EDC model is very similar to the QL model at a relatively low turbulent Reynolds number. It is highlighted that both the EDC and PaSR models are suitable for high turbulent Reynolds number and medium Karlovitz number conditions. Theoretical analysis is carried out to explain the current observations and predict the models’ behaviors with the variation of turbulent intensity, combustion intensity, and grid resolution. Implications of the present results for modeling are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aspden, A., Day, M., Bell, J.: Turbulence–flame interactions in lean premixed hydrogen: transition to the distributed burning regime. J. Fluid Mech. 680, 287–320 (2011)

    Article  MATH  Google Scholar 

  • Aspden, A., Day, M., Bell, J.: Towards the distributed burning regime in turbulent premixed flames. J. Fluid Mech. 871, 1–21 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Berglund, M., Fedina, E., Fureby, C., Tegnér, J., Sabel’Nikov, V.: Finite rate chemistry large-eddy simulation of self-ignition in supersonic combustion ramjet. AIAA J 48(3), 540–550 (2010)

    Article  Google Scholar 

  • Bobbitt, B., Lapointe, S., Blanquart, G.: Vorticity transformation in high Karlovitz number premixed flames. Phys Fluids 28(1), 015101 (2016)

    Article  Google Scholar 

  • Burali, N., Lapointe, S., Bobbitt, B., Blanquart, G., Xuan, Y.: Assessment of the constant non-unity Lewis number assumption in chemically-reacting flows. Combust. Theory Model. 20(4), 632–657 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll, P.L., Blanquart, G.: A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 25(10), 105114 (2013)

    Article  Google Scholar 

  • Chakraborty, N., Klein, M.: A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation. Phys. Fluids 20(8), 085108 (2008)

    Article  MATH  Google Scholar 

  • Chen, J.H.: Petascale direct numerical simulation of turbulent combustion-fundamental insights towards predictive models. Proc. Combust. Inst. 33(1), 99–123 (2011)

    Article  Google Scholar 

  • Chen, Z., Wen, J., Xu, B., Dembele, S.: Large eddy simulation of a medium-scale methanol pool fire using the extended eddy dissipation concept. Int. J. Heat Mass Transf. 70, 389–408 (2014)

    Article  Google Scholar 

  • Chomiak, J.: Combustion a Study in Theory, Fact and Application. Abacus Press, Philadelphia (1990)

  • Chomiak, J., Karlsson, A.: Flame liftoff in diesel sprays. Symp. Int. Combust. 26(2), 2557–2564 (1996)

    Article  Google Scholar 

  • Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000)

    Article  MATH  Google Scholar 

  • Desjardins, O., Blanquart, G., Balarac, G., Pitsch, H.: High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227(15), 7125–7159 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Driscoll, J.F., Chen, J.H., Skiba, A.W., Carter, C.D., Hawkes, E.R., Wang, H.: Premixed flames subjected to extreme turbulence: some questions and recent answers. Prog. Energy Combust. Sci. 76, 100802 (2020)

    Article  Google Scholar 

  • Ertesvåg, I.S., Magnussen, B.F.: The eddy dissipation turbulence energy cascade model. Combust. Sci. Technol. 159(1), 213–235 (2000)

    Article  Google Scholar 

  • Fedina, E., Fureby, C., Bulat, G., Meier, W.: Assessment of finite rate chemistry large eddy simulation combustion models. Flow Turbul. Combust. 99(2), 385–409 (2017)

    Article  Google Scholar 

  • Ferrarotti, M., Li, Z., Parente, A.: On the role of mixing models in the simulation of mild combustion using finite-rate chemistry combustion models. Proc. Combust. Inst. 37(4), 4531–4538 (2019)

    Article  Google Scholar 

  • Fiorina, B., Veynante, D., Candel, S.: Modeling combustion chemistry in large eddy simulation of turbulent flames. Flow Turbul. Combust. 94(1), 3–42 (2015)

    Article  Google Scholar 

  • Fox, R.O.: Computational Models for Turbulent Reacting Flows. Cambridge Series in Chemical Engineering. Cambridge University Press (2003)

  • Giacomazzi, E., Battaglia, V., Bruno, C.: The coupling of turbulence and chemistry in a premixed bluff-body flame as studied by les. Combust. Flame 138(4), 320–335 (2004)

    Article  Google Scholar 

  • Gicquel, L.Y., Staffelbach, G., Poinsot, T.: Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38(6), 782–817 (2012)

    Article  Google Scholar 

  • Goodwin, D.G., Moffat, H.K., Speth, R.L.: Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes (2009)

  • Han, W., Wang, H., Kuenne, G., Hawkes, E.R., Chen, J.H., Janicka, J., Hasse, C.: Large eddy simulation/dynamic thickened flame modeling of a high Karlovitz number turbulent premixed jet flame. Proc. Combust. Inst. 37(2), 2555–2563 (2019)

    Article  Google Scholar 

  • Hansinger, M., Pfitzner, M., Klein, M.: Statistical analysis and verification of a new premixed combustion model with dns data. Combust. Sci. Technol. 192(11), 2093–2114 (2020)

    Article  Google Scholar 

  • Hawkes, E.R., Chatakonda, O., Kolla, H., Kerstein, A.R., Chen, J.H.: A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combust. Flame 159(8), 2690–2703 (2012)

    Article  Google Scholar 

  • Iavarone, S., Péquin, A., Chen, Z.X., Doan, N.A.K., Swaminathan, N., Parente, A.: An a priori assessment of the partially stirred reactor (pasr) model for mild combustion. In: Proceedings of the Combustion Institute (2020)

  • James, S., Zhu, J., Anand, M.: Large-eddy simulations as a design tool for gas turbine combustion systems. AIAA J. 44(4), 674–686 (2006)

    Article  Google Scholar 

  • Janicka, J., Sadiki, A.: Large eddy simulation of turbulent combustion systems. Proc. Combust. Inst. 30(1), 537–547 (2005)

    Article  Google Scholar 

  • Jasak, H., Jemcov, A., Tukovic, Z., et al.: In: International Workshop on Coupled Methods in Numerical Dynamics, vol. 1000, pp. 1–20. IUC Dubrovnik Croatia (2007)

  • Kee, R.J., Grcar, J.F., Smooke, M.D., Miller, J.A., Meeks, E.: Premix: a Fortran program for modeling steady laminar one-dimensional premixed flames. Sandia National Laboratories Report (SAND85-8249) (1985)

  • Kim, S.H.: Leading points and heat release effects in turbulent premixed flames. Proc. Combust. Inst. 36(2), 66 (2017)

    Google Scholar 

  • Klein, M., Chakraborty, N.: A-priori analysis of an alternative wrinkling factor definition for flame surface density based large eddy simulation modelling of turbulent premixed combustion. Combust. Sci. Technol. 191(1), 95–108 (2019)

    Article  Google Scholar 

  • Klein, M., Chakraborty, N., Ketterl, S.: A comparison of strategies for direct numerical simulation of turbulence chemistry interaction in generic planar turbulent premixed flames. Flow Turbul. Combust. 99(3), 955–971 (2017)

    Article  Google Scholar 

  • Kolla, H., Hawkes, E., Kerstein, A., Swaminathan, N., Chen, J.: On velocity and reactive scalar spectra in turbulent premixed flames. J. Fluid Mech. 754, 456–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Krejci, M.C., Mathieu, O., Vissotski, A.J., Ravi, S., Sikes, T.G., Petersen, E.L., Kérmonès, A., Metcalfe, W., Curran, H.J.: Laminar flame speed and ignition delay time data for the kinetic modeling of hydrogen and syngas fuel blends. J. Eng. Gas Turbines Power 135(2), 66 (2013)

    Article  Google Scholar 

  • Kuron, M., Hawkes, E.R., Ren, Z., Tang, J.C., Zhou, H., Chen, J.H., Lu, T.: Performance of transported pdf mixing models in a turbulent premixed flame. Proc. Combust. Inst. 36(2), 1987–1995 (2017)

    Article  Google Scholar 

  • Li, Z., Cuoci, A., Parente, A.: Large eddy simulation of mild combustion using finite rate chemistry: effect of combustion sub-grid closure. Proc. Combust. Inst. 37(4), 4519–4529 (2019)

    Article  Google Scholar 

  • Lipatnikov, A., Sabelnikov, V.: Evaluation of mean species mass fractions in premixed turbulent flames: a dns study. In: Proceedings of the Combustion Institute (2020a)

  • Lipatnikov, A.N., Sabelnikov, V.A.: An extended flamelet-based presumed probability density function for predicting mean concentrations of various species in premixed turbulent flames. Int. J. Hydrog. Energy 45(55), 31162–31178 (2020b)

    Article  Google Scholar 

  • Lipatnikov, A., Sabelnikov, V., Hernández-Pérez, F., Song, W., Im, H.G.: A priori dns study of applicability of flamelet concept to predicting mean concentrations of species in turbulent premixed flames at various Karlovitz numbers. Combust. Flame 222, 370–382 (2020a)

    Article  Google Scholar 

  • Lipatnikov, A., Sabelnikov, V., Hernández-Pérez, F., Song, W., Im, H.G.: Prediction of mean radical concentrations in lean hydrogen-air turbulent flames at different Karlovitz numbers adopting a newly extended flamelet-based presumed pdf. Combust. Flame 226, 248–259 (2020b)

    Article  Google Scholar 

  • Luo, K., Liu, R., Bai, Y., Attili, A., Pitsch, H., Bisetti, F., Fan, J.: A-priori and a-posteriori studies of a direct moment closure approach for turbulent combustion using dns data of a premixed flame. In: Proceedings of the Combustion Institute (2020)

  • Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Numerical simulations of the Sandia flame d using the eddy dissipation concept. Flow Turbul. Combust. 93(4), 665–687 (2014)

    Article  Google Scholar 

  • Magnussen, B.: In: 19th Aerospace Sciences Meeting, p. 42 (1981)

  • Magnussen, B.F.: In: ECCOMAS Thematic Conference on Computational Combustion, vol. 21, p. 24. Libson, Portugal (2005)

  • Nilsson, T., Yu, R., Doan, N.A.K., Langella, I., Swaminathan, N., Bai, X.S.: Filtered reaction rate modelling in moderate and high Karlovitz number flames: an a priori analysis. Flow Turbul. Combust. 103(3), 643–665 (2019)

    Article  Google Scholar 

  • Panjwani, B., Ertesvåg, I.S., Gruber, A., Rian, K.E.: Turbulence combustion closure model based on the eddy dissipation concept for large eddy simulation. Adv. Fluid Mech. VIII 69, 66 (2010)

    MATH  Google Scholar 

  • Peters, N.: Turbulent Combustion. Cambridge Monographs on Mechanics (Cambridge University Press, 2000)

  • Pitsch, H.: Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Poling, B.E., Prausnitz, J.M., O’connell, J.P.: Properties of Gases and Liquids. McGraw-Hill Education (2001)

  • Pope, S.B.: Pdf methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11(2), 119–192 (1985)

    Article  Google Scholar 

  • Pope, S.B.: Turbulent Flows (2001)

  • Pope, S.B.: Small scales, many species and the manifold challenges of turbulent combustion. Proc. Combust. Inst. 34(1), 1–31 (2013)

    Article  MathSciNet  Google Scholar 

  • Ren, J., Wang, H., Luo, K., Fan, J.: A priori assessment of convolutional neural network and algebraic models for flame surface density of high Karlovitz premixed flames. Phys. Fluids 33(3), 036111 (2021)

    Article  Google Scholar 

  • Rosales, C., Meneveau, C.: Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17(9), 095106 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Sabelnikov, V., Fureby, C.: Les combustion modeling for high re flames using a multi-phase analogy. Combust. Flame 160(1), 83–96 (2013)

    Article  Google Scholar 

  • Savard, B., Blanquart, G.: An a priori model for the effective species Lewis numbers in premixed turbulent flames. Combust. Flame 161(6), 1547–1557 (2014)

    Article  Google Scholar 

  • Savard, B., Blanquart, G.: Broken reaction zone and differential diffusion effects in high Karlovitz n-c7h16 premixed turbulent flames. Combust. Flame 162(5), 2020–2033 (2015)

    Article  Google Scholar 

  • Savard, B., Bobbitt, B., Blanquart, G.: Structure of a high Karlovitz n-c7h16 premixed turbulent flame. Proc. Combust. Inst. 35(2), 1377–1384 (2015)

    Article  Google Scholar 

  • Steinberg, A.M., Hamlington, P.E., Zhao, X.: Structure and dynamics of highly turbulent premixed combustion. Prog. Energy Combus. Sci. 85, 100900 (2021)

    Article  Google Scholar 

  • Vo, S., Kronenburg, A., Stein, O.T., Hawkes, E.R.: In: High Performance Computing in Science and Engineering, Vol. 16, pp. 245–257. Springer (2016)

  • Wang, G., Boileau, M., Veynante, D.: Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame 158(11), 2199–2213 (2011)

    Article  Google Scholar 

  • Wang, H., Hawkes, E.R., Chen, J.H., Zhou, B., Li, Z., Aldén, M.: Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame-an analysis of flame stretch and flame thickening. J. Fluid Mech. 815, 511–536 (2017)

    Article  Google Scholar 

  • Yaga, M., Endo, H., Yamamoto, T., Aoki, H., Miura, T.: Modeling of eddy characteristic time in les for calculating turbulent diffusion flame. Int. J. Heat Mass Trans. 45(11), 2343–2349 (2002)

    Article  MATH  Google Scholar 

  • Yang, T., Xie, Q., Zhou, H., Ren, Z.: On the modeling of scalar mixing timescale in filtered density function simulation of turbulent premixed flames. Phys. Fluids 32(11), 115130 (2020)

    Article  Google Scholar 

  • Zettervall, N., Nordin-Bates, K., Nilsson, E., Fureby, C.: Large eddy simulation of a premixed bluff body stabilized flame using global and skeletal reaction mechanisms. Combust. Flame 179, 1–22 (2017)

    Article  Google Scholar 

  • Zhang, F., Bonart, H., Zirwes, T., Habisreuther, P., Bockhorn, H., Zarzalis, N.: In: High Performance Computing in Science and Engineering, Vol. 14, pp. 221–236. Springer (2015)

  • Zhang, P., Xie, T., Kolla, H., Wang, H., Hawkes, E.R., Chen, J.H., Wang, H.: A priori analysis of a power-law mixing model for transported pdf model based on high Karlovitz turbulent premixed dns flames. In: Proceedings of the Combustion Institute (2020)

Download references

Acknowledgements

The numerical computations were performed using \(\pi \)-2.0 at the Center for High Performance Computing, Shanghai Jiao Tong University. The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 91841303 and No. 91941301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zifei Yin.

Ethics declarations

Funding

This work was supported by the National Natural Science Foundation of China (No. 91841303 and No. 91941301).

Conflict of interest

The authors report no conflict of interest.

Appendix: Validation and verification

Appendix: Validation and verification

Validation and verification of the numerical simulations in the current study are given here. The solver, chemical kinetics, and transport properties for the accurate simulation of combustion are validated first. Then the linear forcing method employed to maintain statistically steady turbulence is validated. Finally, the numerical accuracy is verified.

Our customized OpenFOAM solver was used to simulate a one-dimensional laminar flame at different equivalent ratios and a two-dimensional laminar flame with initial perturbation, which induces the thermo-diffusive and Darrieus-Landau instabilities (see ref. Burali et al. (2016) for detailed descriptions of the two-dimensional case). The results are shown in Fig. 9. It can be seen that the simulated laminar flame speed agrees with the PREMIX solver (Kee et al. 1985) and the experiment (Krejci et al. 2013) results perfectly at various equivalent ratios. For the two-dimensional case, the variation of the flame position agrees well with the simulated results of the NGA solver (Desjardins et al. 2008) with mixture-averaged transport properties.

Fig. 9
figure 9

Validations with the simulations of a one-dimensional laminar flame and b two-dimensional laminar flame with initial perturbation

The linear forcing method is validated by simulating a corresponding non-reactive case of the present study, which is statistically steady homogeneous isotropic turbulence with inflow and outflow. The computational domain, mesh, and forcing parameters are the same as Case 4. The time variation of the ensemble-averaged turbulence properties \(k, l_t\), and the energy-spectrum are demonstrated in Fig. 10. The turbulence properties are averaged over the whole computational domain while the energy spectrum is calculated in different (yz) planes at the end of the simulation. The turbulent properties reach statistical stationery quickly. The integral length settles to nearly 20% of the computational domain width, corresponding to previous studies in a cubic computational domain (Carroll et al. 2013; Rosales and Meneveau 2005). The scaling of \(l_t\) with respect to the computational domain length (Klein et al. 2017) is not observed in the current study. This may be attributed to the differences in the streamwise boundary conditions. In this study, the Dirichlet velocity inflow and the advective outflow avoid the accumulation of the interaction between different wavelengths. The energy spectrum at different (yz) planes is almost identical, with an apparent Kolmogorov \(-5/3\) power decay in the inertial range. Figure 10 verifies the capability of the forcing method used in this study to produce statistically stationary one-dimensional homogeneous isotropic turbulence.

Fig. 10
figure 10

The simulated a turbulence properties \(k, l_t\) and b energy spectrum of non-reacting homogeneous isotropic turbulence

In this study, the turbulence is forced across the flame, like the previous simulations (Savard et al. 2015; Aspden et al. 2019). Such setup has raised some concerns regarding the physical fidelity of the turbulent combustion region under forcing. Klein et al. (2017) argued that forcing inside the flame may lead to an unrealistically high level of turbulence on the burned side combined with too small turbulent scales. In this sense, forcing only on the unburned side to make the turbulence freely penetrate the flame is more recommended, allowing the increase of integral length scales across the flame front.

Although forcing on the unburned side would seem more appropriate, the authors have encountered some practical difficulties in the present study. When the forcing ends, the turbulence decay too fast (in the distance \(\sim \)0.001 m) to get desired turbulent properties in the flame region (with the length scale \(\sim \)0.008 m), especially at high turbulence intensity. This disadvantage of the regional forcing was also mentioned by Klein et al. (2017). On the other hand, we estimate the relative effect of forcing in turbulent evolution according to the vorticity transport equation (Bobbitt et al. 2016). The viscous dissipation term \(T_v\) and vortex stretching term \(T_s\) scales as \(\tau _{\eta }^{-3}\) while the forcing term \(T_f\) scales as \(0.5\tau _t^{-1} \tau _{\eta }^{-2}\), where \(\tau _t\) and \(\tau _{\eta }\) are large scale eddy turnover time and Kolmogorov time scale, respectively. This leads to \(T_v / T_f \propto T_s / T_f \propto 3\sqrt{Re_t} \). In our simulations, this ratio is 14 for Case 1 and 51 for Case 4. Thus, the effect of the forcing is relatively negligible in our simulations, given that our purpose is to examine the turbulent combustion models.

The current DNS is carried with OpenFOAM and the overall numerical accuracy is \(2^{\mathrm{nd}}\) order. There are studies that use \(2^\mathrm{nd}\) order code (Aspden et al. 2011; Savard and Blanquart 2015) or OpenFOAM (Zhang et al. 2015; Vo et al. 2016) to perform DNS of turbulent combustion. The reasonable turbulence energy spectrum demonstrated in Fig. 10 also confirms our capability to perform DNS with OpenFOAM.

The grid quality can be considered in two aspects: resolving the flame and the turbulence. There are more than 20 cells in the thermal flame thickness for Cases 1-3 and more than 40 for Case 4, sufficient for resolving the flame according to previous DNS studies (Vo et al. 2016; Aspden et al. 2011; Savard and Blanquart 2015). As for the resolving of turbulence, it is suggested that the grid of DNS is good enough at \(\Delta x / \eta < 2.1\) (Pope 2001). In our simulations, this criterion is satisfied in all the cases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yin, Z., Xie, W. et al. Numerical and Analytical Assessment of Finite Rate Chemistry Models for LES of Turbulent Premixed Flames. Flow Turbulence Combust 109, 435–458 (2022). https://doi.org/10.1007/s10494-022-00329-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-022-00329-7

Keywords

Navigation