Skip to main content
Log in

Microfacies and stable isotope analyses (δ13C and δ18O) of the upper Serpukhovian-Moscovian carbonates in the Hadim Nappe, southern Turkey: an approach to document the Late Paleozoic Ice Age (LPIA)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The Late Paleozoic ice age (LPIA) span from latest Devonian to Late Permian (Lopingian) and was one of the three major Phanerozoic glaciations. Large continental ice sheets covered wide parts of Gondwana at high latitudes of the southern hemisphere during the Pennsylvanian and Cisuralian/Early Permian. Many paleoclimate reconstructions have been based on direct evidence of glacial deposits or indirect evidence (far-field effects) of stable isotope proxies and facies analysis of carbonate successions. In this study, we present for the first time Late Mississippian to Middle Pennsylvanian lithostratigraphy, microfacies analysis and stable isotope analyses (δ13C and δ18O) of the stratigraphic units in the Hadim Nappe sections in the Taurides of southern Turkey. Based on detailed sedimentological studies, 12 microfacies and 9 sub-microfacies were defined for this stratigraphic interval. The main microfacies types indicate restricted to open marine, shoal and lagoon or peritidal zones. Evidence from the microfacies and sedimentology, as well as isotope data (δ13C) recovered from the stratigraphic units (Yassıpınar, Gölbelen and Bademli sections) indicate that upper Serpukhovian-Moscovian successions of the Hadim Nappe were indirectly affected by Gondwana glaciation and during the Glacial Period II–III and C3 and C4 of the Australian glacial periods. Late Paleozoic global paleoclimatic changes are recorded in the stable isotope (δ13C and δ18O) record of the studied succession in Tauride Platform in Hadim area and correlate with Russian and Chinese Platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

All materials (thin-sections) are reposited in the collection of the MA-(HY15) at Faculty of Engineering and Natural Sciences, Department of Geological Engineering, Konya Technical University.

Code availability

Not applicable.

References

  • Abadia MS, Soreghana GS, Heavensb NG, Voetenc DFAE, Ivanovad RM (2019) Warm-water carbonates in proximity to Gondwanan ice-sheets: a record from the Upper Paleozoic of Iran. Palaeogeogr Palaeoclimatol Palaeoecol 531:1–17. https://doi.org/10.1016/j.palaeo.2018.09.008

    Article  Google Scholar 

  • Akbaş M (2020) Foraminiferal biochronology, microfacies analysis and environmental interpretation of Bashkirian-Moscovian (lower and middle Pennsylvanian) successions in the Hadim Nappe (Central Taurides). Dissertation. Konya Technical University, Institute of Graduate Studies, Konya (in Turkish)

  • Akbaş M, Okuyucu C (2021) Biostratigraphy and taxonomy of fusulinid Foraminifera across the upper Mississippian (upper Serpukhovian)-lower Pennsylvanian (Bashkirian) successions from the Hadim Nappe, Central Taurides, southern Turkey. J Paleontol 95(3):476–496. https://doi.org/10.1017/jpa.2020.116

    Article  Google Scholar 

  • Akbaş M, Okuyucu C (2022) Fusulinid biostratigraphy of the Moscovian–lower Kasimovian of Hadim Nappe, Central Taurides, southern Turkey. Geodiversitas. (in press)

  • Atakul-Özdemir A (2006) Lower-middle carboniferous boundary in central Taurides, Turkey (Hadim area): paleontological and sequence stratigraphic approach. Dissertation. Middle East Technical University, Graduate School of Natural and Applied Sciences, Ankara

  • Altıner D, Özkan-Altıner S, Yılmaz İÖ, Özdemir-Atakul A (2012) Glacioeustatic sea-level change in the Early Pennsylvanian: evidence from the Bashkirian-Moscovian boundary beds in Taurides (Turkey). In: Yalçın MN, Çorbacıoğlu H, Aksu Ö, Bozdoğan N (eds) Paleozoic of northern Gondwana and its petroleum potential, a field workshop. Kayseri, Turkey, pp 68–69

    Google Scholar 

  • Atakul-Özdemir A, Altıner D, Özkan-Altıner S, Yılmaz İÖ (2011) Foraminiferal biostratigraphy and sequence stratigraphy across the mid-Carboniferous boundary in the Central Taurides, Turkey. Facies 57(4):705–730. https://doi.org/10.1007/s10347-010-0260-y

    Article  Google Scholar 

  • Bahamonde JR, Della Porta G, Merino-Tomé OA (2017) Lateral variability of shallow-water facies and high-frequency cycles in foreland basin carbonate platforms (Pennsylvanian, NW Spain). Facies 63(6):1–39. https://doi.org/10.1007/s10347-016-0487-3

    Article  Google Scholar 

  • Barnaby RJ, Ward WB (2007) Outcrop analog for mixed siliciclastic carbonate ramp reservoirs-stratigraphic hierarchy, facies architecture, and geologic heterogeneity: grayburg Formation, Permian Basin, USA. J Sediment Res 77(1):34–58. https://doi.org/10.2110/jsr.2007.007

    Article  Google Scholar 

  • Blakey RC (2008) Gondwana paleogeography from assembly to breakup-A 500 m.y. odyssey. In: Fielding CR, Frank TD, Isbell JL (eds) Resolving the late Paleozoic ice age in time and space. Geological Society of America Special Paper, vol 441, pp 1–28. https://doi.org/10.1130/2008.2441(01)

  • Blumenthal MM (1944) Schichtfolge und Bau der Taurusketten im Hinterland von Bozkir. Rev Fac Sci Univ Istanbul Ser B 9(2):95–125

    Google Scholar 

  • Blumenthal MM (1951) Recherches géologiques dans le Taurus occidental dans l’arriére-pays d’Alanya. Miner Res Explor Inst Publ Ser D 5:1–194

    Google Scholar 

  • Brunn JH, Graciansky PCd, Gutnic M, Juteau T, Lefevre R, Marcoux J, Monod O, Poisson A (1970) Structures majeures et correlations stratigraphiques dans les Taurides occidentales. Bull Soc Geol Fr 7(3):515–556

    Article  Google Scholar 

  • Brunn JH, Dumont J, Graciansky PCd, Gutnic M, Juteau T, Marcoux J, Monod O, Poisson A (1971) Outline of the geology of the western Taurids. In: Campbell AS (ed) Geology and history of Turkey. Petroleum Exploration Society of Libya, Tripoli, pp 225–255

    Google Scholar 

  • Buggisch W, Wang X, Alekseev AS, Joachimski MM (2011) Carboniferous-Permian carbon isotope stratigraphy of successions from China (Yangtze platform), USA (Kansas) and Russia (Moscow Basin and Urals). Palaeogeogr Palaeoclimatol Palaeoecol 301:18–38. https://doi.org/10.1016/j.palaeo.2010.12.015

    Article  Google Scholar 

  • Chen J, Shenga Q, Huc K, Yaoa L, Lina W, Montañez IP, Tiana X, Qia Y, Wanga X (2019) Late Mississippian glacio-eustasy recorded in the eastern Paleo-Tethys Ocean (South China). Palaeogeogr Palaeoclimatol Palaeoecol 531:1–12. https://doi.org/10.1016/j.palaeo.2018.07.021

    Article  Google Scholar 

  • Chen J, Shenb S, Zhangc Y, Angiolinid L, Gorgije MN, Crippad G, Wangc W, Zhangc H, Yuanc D, Lif X, Xua Y (2020) Abrupt warming in the latest Permian detected using high-resolution in situ oxygen isotopes of conodont apatite from Abadeh, central Iran. Palaeogeogr Palaeoclimatol Palaeoecol 560:1–11. https://doi.org/10.1016/j.palaeo.2020.109973

    Article  Google Scholar 

  • Della Porta G, Kenter JAM, Immenhauser A, Bahamonde JR (2002a) Lithofacies character and architecture across a Pennsylvanian inner-platform transect (Sierra de Cuera, Asturias, Spain). J Sediment Res 72(6):898–916. https://doi.org/10.1306/040902720898

    Article  Google Scholar 

  • Della Porta G, Kenter JAM, Bahamonde JR (2002b) Depositional facies and stratal geometry of an Upper carboniferous prograding and aggrading high-relief carbonate platform (Cantabrian Mountains, N Spain). Sedimentology 51:267–295. https://doi.org/10.1046/j.1365-3091.2003.00621.x

    Article  Google Scholar 

  • Demirel S (2006) Foraminiferal paleontology and sequence stratigraphy in the upper Visean-Serpukhovian deposits (Aladağ Unit, Eastern Taurides, Turkey). Dissertation. Middle East Technical University, Graduate School of Natural and Applied Sciences, Ankara

  • Derry LA (2010) A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth Planet Sci Lett 294:152–162. https://doi.org/10.1016/j.epsl.2010.03.022

    Article  Google Scholar 

  • Dub SA, Mizens GA, Kuleshov VN, Stepanova TI, Kucheva NA, Nikolaeva SV, Melnichuk OYu, Kulagina EI, Petrov OL (2020) The mid-carboniferous boundary in the eastern slope of the southern and middle Urals: carbon and oxygen isotopic composition in limestones. Litosfera 20(3):305–327. https://doi.org/10.24930/1681-9004-2020-20-3-305-327 (in Russian)

    Article  Google Scholar 

  • Fielding CR, Frank TD, Birgenheier LP, Rygel MC, Jones AT, Roberts J (2008a) Stratigraphic imprint of the Late Palaeozoic ice age in eastern Australia: a record of alternating glacial and non-glacial climate regime. J Geol Soc Lond 165(1):129–140. https://doi.org/10.1144/0016-76492007-036

    Article  Google Scholar 

  • Fielding CR, Frank TD, Birgenheier LP, Rygel MC, Jones AT, Roberts J (2008b) Stratigraphic record and facies associations of the Late Paleozoic ice age in eastern Australia (New South Wales and Queensland). In: Fielding CR, Frank TD, Isbell JL (eds) Resolving the Late Paleozoic Ice Age in time and space. Geological Society of America Special Paper, vol 441, pp 41–57. https://doi.org/10.1130/2008.2441(03))

  • Fielding CR, Frank TD, Isbell JL (2008c) The Late Paleozoic ice age—a review of current understanding and synthesis of global climate patterns. In: Fielding CR, Frank TD, Isbell JL (eds) Resolving the Late Paleozoic ice age in time and space. Geological Society of America Special Paper, vol 441, pp 343–354. https://doi.org/10.1130/2008.2441(24))

  • Fischer A, Sarnthein M (1988) Airborne silts and dune-derived sands in the Permian of the Delaware Basin. J Sediment Petrol 58(4):637–643. https://doi.org/10.1306/212f8e0e-2b24-11d7-8648000102c1865d

    Article  Google Scholar 

  • Flügel E (2010) Microfacies of carbonate rocks: analysis, interpretation and application, 2nd edn. Springer, Heidelberg Dordrecht London New York

    Book  Google Scholar 

  • Grossman EL, Bruckschen P, Mii HS, Chuvashov BI, Yancey TE, Veizer J (2002) Carboniferous paleoclimate and global change: isotopic evidence from the Russian Platform. In: Carboniferous stratigraphy and paleogeography in Eurasia. Institute of Geology and Geochemistry, Russian Academy of Sciences, Urals Branch, Ekaterinburg, pp 61–71

  • Grossman EL, Yancey TE, Jones TE, Bruckschen P, Chuvashov B, Mazzullo SJ, Mii HS (2008) Glaciation, aridification, carbon sequestration in the Permo-Carboniferous: the isotopic record from low latitudes. Palaeogr Palaeoclimatol Palaeoecol 268:222–233. https://doi.org/10.1016/j.palaeo.2008.03.053

    Article  Google Scholar 

  • Gutnic M, Kelter D, Monod O (1968) Découverte de nappes de charriage dans le Nord de Taurus occidental (Turquie). Comp Rend Acad Sci Sér D 266:988–991

    Google Scholar 

  • Gutnic M, Monod O, Poisson A, Dumont F (1979) Gèologie des Taurides Occidentales (Turquie). Mémoir Soc Geol France Paris 137:1–112

    Google Scholar 

  • Güvenç T (1965) Etude stratigraphique et micropaléontologique du Carbonifère et du Permien des Taurus occidentaux dans l’arrière-pays d’Alanya (Turquie). Dissertation. Université de Paris

  • Güvenç T (1977) Permian of Turkey. 6th colloquium of the geology of Aegean regions. Aegean University, İzmir, pp 263–282

  • Haq BU, Schutter SR (2008) A chronology of Paleozoic sea-level changes. Science 322:64–68. https://doi.org/10.1126/science.1161648

    Article  Google Scholar 

  • Isbell JL, Miller MF, Wolfe KL, Lenaker PA (2003) Timing of Late Paleozoic glaciation in Gondwana: was glaciation responsible for the development of Northern Hemisphere cyclothems?. In: Chan MA, Archer AW (eds) Extreme depositional environments: mega end members in geologic time. Geological Society of America, Boulder, Colorado, special paper, vol 370, pp 5–24. https://doi.org/10.1130/0-8137-2370-1.5

  • Isbell JL, Henry LC, Gulbranson EL, Limarino CO, Fraiser ML, Koch ZJ, Ciccioli PL, Dineen AA (2012) Glacial paradoxes during the Late Paleozoic ice age: evaluating the equilibrium line altitude as a control on glaciation. Gondwana Res 22:1–19. https://doi.org/10.1016/j.gr.2011.11.005

    Article  Google Scholar 

  • Knauth LP, Kennedy MJ (2009) The Late Precambrian greening of the Earth. Nature 460:728–732. https://doi.org/10.1038/nature08213

    Article  Google Scholar 

  • Kuleshova VN, Sedaevab KM, Gorozhaninc VM, Gorozhaninac EN (2018) Hypostratotype of the Bashkirian stage of the carboniferous system (Askyn River, Bashkortostan): lithology, isotopes (δ13C, δ18O), and carbonate depositional settings. Stratigr Geol Correl 26(6):698–719. https://doi.org/10.1134/S0869593818060047

    Article  Google Scholar 

  • Kump LR, Arthur MA (1999) Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol 161(1–3):181–198. https://doi.org/10.1016/s0009-2541(99)00086-8

    Article  Google Scholar 

  • Marshall JD (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Mag 129(2):143–160. https://doi.org/10.1017/s0016756800008244

    Article  Google Scholar 

  • Monod O (1977) Recherches Geologigues Dans Ie Taurus Occidental au Sud de Beyşehir (Turguie). Dissertation. l'Univ. de Paris Sud, Paris

  • Montañez IP, Poulsen CJ (2013) The Late Paleozoic ice age: an evolving paradigm. Annu Rev Earth Planet Sci 41:629–656. https://doi.org/10.1146/annurev.earth.031208.100118

    Article  Google Scholar 

  • Okuyucu C, Tekin UK, Noble PJ, Bedi Y, Saydam-Demiray DG, Sayit K (2018) Foraminifera, radiolaria and conodont assemblages from the early Mississipian (late Tournaisian)/early Pennsylvanian (early Bashkirian) blocks within the Mersin Melange, southern Turkey: biochronological and paleogeographical implications. Palaeoworld 27(4):438–457. https://doi.org/10.1016/j.palwor.2018.08.002

    Article  Google Scholar 

  • Özgül N (1971) The importance of block movements in structural evolution of the northern part of central Taurus. Bull Geol Soc Turkey 14(1):85–101 (in Turkish)

    Google Scholar 

  • Özgül N (1976) Some geological aspects of the Taurus orogenic belt. Bull Geol Soc Turkey 19:65–78 (in Turkish)

    Google Scholar 

  • Özgül N (1984) Stratigraphy and tectonic evolution of the Central Taurides. In: Tekeli O, Göncüoglu MC (eds) International symposium on geology of the Taurus belt, Ankara, Turkey, pp 77–90

  • Özgül N (1997) Stratigraphy of the tectono-stratigraphic units in the region Bozkir-Hadim-Taskent (north central Taurides). Bull Miner Res Explor 119:113–174 (in Turkish)

    Google Scholar 

  • Rosa ELM, Isbell JL (2020) Late Paleozoic glaciation. In: Alderton D, Elias SA (eds) Encyclopedia of geology, 2nd edn. Elsevier, Amsterdam, pp 534–345

    Google Scholar 

  • Şengör AM (1984) The cimmeride orogenic system and the tectonics of Eurasia. Geol Soc Am Spec Pap 195:1–74. https://doi.org/10.1130/SPE195-p1

    Article  Google Scholar 

  • Şengör AM, Yılmaz Y (1981) Tethyan evolution of Turkey, a plate tectonic approach. Tectonophysics 75(3–4):181–241. https://doi.org/10.1016/0040-1951(81)90275-4

    Article  Google Scholar 

  • Tian X, Chen J, Yao L, Hu K, Qi Y, Wang X (2019) Glacio-eustasy and δ13C across the Mississippian-Pennsylvanian boundary in the eastern Paleo-Tethys Ocean (South China): implications for mid-carboniferous major glaciation. Geol J. https://doi.org/10.1002/gj.3551

    Article  Google Scholar 

  • Turan A (1990) Geology, stratigraphy and tectonic evolution of Hadim (Konya) and its southwest in the Taurus. Dissertation. Selçuk University, The Graduate School of Natural and Applied Sciences, Konya (in Turkish)

  • Turan A (2000) The stratigraphy of the taurides between Karaköy and Hadim. Dokuz Eylul Univ Fac Eng J Sci Eng 2(1):61–89 (in Turkish)

    Google Scholar 

  • Turan A (2019) The stratigraphy between of the Aydıncık and Duruhan. Dokuz Eylul Univ Fac Eng J Sci Eng 21(62):633–647. https://doi.org/10.21205/deufmd.2019216226

    Article  Google Scholar 

  • Wang XD, Hu KY, Qie WK, Sheng QY, Chen B, Lin W, Yao L, Wang QL, Qi YP, Chen JT, Liao ZT, Song JJ (2019) Carboniferous integrative stratigraphy and timescale of China. Sci China Earth Sci 62(1):135–153. https://doi.org/10.1007/s11430-017-9253-7

    Article  Google Scholar 

  • Wright VP (1992) Speculations on the controls on cyclic peritidal carbonates: ice-house versus greenhouse eustatic controls. Sed Geol 76:1–5. https://doi.org/10.1016/0037-0738(92)90135-E

    Article  Google Scholar 

  • Yang B, Zhang X, Qie W, Wei Y, Huang X, Xia H (2020) Variabilities of carbonate δ13C signal in response to the Late Paleozoic glaciations, Long’an, South China. Front Earth Sci 14(2):344–359. https://doi.org/10.1007/s11707-019-0781-9

    Article  Google Scholar 

  • Yu HC, Qiu KF, Li M, Santosh M, Zhao ZG, Huang YQ (2020) Record of the Late Paleozoic ice age from Tarim, China. Geochem Geophys Geosyst 21:1–20. https://doi.org/10.1029/2020GC009237

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Scientific Research Projects Coordination Unit of Selçuk University, Konya, Turkey [grant number 17101003]. We also thank to the stable isotope mass spectrometer laboratory at the central laboratory of the Middle East Technical University, Ankara, Turkey for the stable isotope analysis. We are thankful to Robert W. Scott (Precision Stratigraphy Associates and The University of Tulsa) for improving the English of the text, and grateful to the reviewers (Giovanna Della Porta and an anonymous reviewer) for their constructive remarks and very useful comments that significantly improved the manuscript, and Wolfgang Kießling for the editorial handling.

Funding

This study was funded by Scientific Research Projects Coordination Unit of the Selcuk University, Konya, Turkey (Project no: 17101003).

Author information

Authors and Affiliations

Authors

Contributions

MA: investigation, writing-original draft; CO: investigation, writing—review & editing, supervision; İÖY: investigation, writing—review & editing, supervision.

Corresponding author

Correspondence to Melikan Akbaş.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material. Raw isotopic (δ13C and δ18O) data of the studied sections.

Figure 9, 11–S1

δ13C and δ18O isotope analysis results for limestone carbonates of Yassıpınar and Bademli sections. Supplementary file1 (XLS 26 KB)

Figure 9, 11–S2

δ13C and δ18O isotope analysis results for limestone carbonates of Yassıpınar (additional samples) and Gölbelen sections. Supplementary file2 (XLS 26 KB)

10347_2022_649_MOESM3_ESM.docx

δ13C and δ18O isotope analysis results for limestone carbonates of Yassıpınar (additional samples). Supplementary file3 (DOCX 133 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbaş, M., Okuyucu, C. & Yılmaz, İ.Ö. Microfacies and stable isotope analyses (δ13C and δ18O) of the upper Serpukhovian-Moscovian carbonates in the Hadim Nappe, southern Turkey: an approach to document the Late Paleozoic Ice Age (LPIA). Facies 68, 12 (2022). https://doi.org/10.1007/s10347-022-00649-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-022-00649-0

Keywords

Navigation