Skip to main content

Advertisement

Log in

Multi-technique comparison to assess the effect of bioturbation on porosity: a study case for reservoir quality in contourites

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

In recent decades, contourites—as sediments deposited or reworked by bottom currents— have begun to be considered important targets for deep-sea petroleum exploration and exploitation. The incidence of bioturbation, a common feature in contourite deposits, on petrophysical properties has never been approached in detail, however. Here, detailed comparative analysis of the impact of ichnological features on contourite rock properties is initiated through the application of different techniques: (a) X-ray micro-computed tomography (Micro-CT), (b) mercury intrusion porosimetry, and (c) analysis of impregnated thin sections. These three techniques were employed to study two types of contourite deposits, namely clastic (Miocene Morocco) and calcareous ones (Eocene–Miocene Cyprus). The results evidence the suitability of a multi-technique approach. Particular strengths and weaknesses may be encountered for each method depending on the type of material, the ichnological features, and the particular objectives. Trace fossils analysed in calcareous contourites show a neutral effect. In contrast, the burrow lining of Macaronichnus in the clastic contourites has a positive incidence on porosity. The appearance of this ichnotaxa could invigorate the reservoir capacity of bioturbated contourite deposits. Thus, we suggest that detailed analyses must be conducted focusing on ichnological features other than the ones traditionally considered. Still, this is a preliminary effort, and more detailed studies are needed to support the obtained results, and eventually extrapolate them to further contourite deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5.
Fig. 6
Fig. 7.

Similar content being viewed by others

References

  • Bednarz M, McIlroy D (2015) Organism–sediment interactions in shale-hydrocarbon reservoir facies—three-dimensional reconstruction of complex ichnofabric geometries and pore-networks. Int J Coal Geol 150:238–251. https://doi.org/10.1016/j.coal.2015.09.002

    Article  Google Scholar 

  • Bromley RG (1996) Trace fossils: biology, taphonomy and applications. Chapman and Hall, London

    Book  Google Scholar 

  • Capella W, Hernández-Molina FJ, Flecker R, Hilgen FJ, Hssain M, Kouwenhoven TJ, van Oorschot M, Sierro FJ, Stow DAV, Trabucho-Alexandre J, Tulbure MA (2017) Sandy contourite drift in the late Miocene Rifian Corridor (Morocco): reconstruction of depositional environments in a foreland-basin seaway. Sediment Geol 355:31–57. https://doi.org/10.1016/j.sedgeo.2017.04.004

    Article  Google Scholar 

  • Coletti C, Cultrone G, Maritana L, Mazzoli C (2016) Combined multi-analytical approach for study of pore system in bricks: how much porosity is there? Mater Charact 121:82–92

    Article  Google Scholar 

  • Dawson WC (1981) Secondary burrow porosity in quartzose biocalcarenites, Upper Cretaceous, Texas, USA.VII Congreso Geológico Argentino. San Luis Actas II:637–639

    Google Scholar 

  • de Weger W, Hernández-Molina FJ, Flecker R, Sierro FJ, Chiarella D, Krijgsman W, Manar MA (2020) Late Miocene contourite channel system reveals intermittent overflow behavior. Geology 48(12):1194–1199. https://doi.org/10.1130/G47944.1

    Article  Google Scholar 

  • de Weger W, Hernández-Molina FJ, Miguez-Salas O, de Castro S, Bruno M, Chiarella D, Sierro FJ, Blackbourn G, Manar MA (2021) Contourite depositional system after the exit of a strait: case study from the late Miocene Rifian Corridor Morocco. Sedimentology. https://doi.org/10.1111/sed.12882

    Article  Google Scholar 

  • Dorador J, Rodríguez-Tovar FJ, IODP Expedition 339 Scientists (2014) Quantitative estimation of bioturbation based on digital image analysis. Mar Geol 349:55–60. https://doi.org/10.1016/j.margeo.2014.01.003

    Article  Google Scholar 

  • Dorador J, Rodríguez-Tovar FJ, Miguez-Salas O (2021) The complex case of Macaronichnus trace fossil affecting rock porosity. Sci Rep 11(1):1–7. https://doi.org/10.1038/s41598-021-81687-6

    Article  Google Scholar 

  • Faugères J-C, Gonthier E, Stow DAV (1984) Contourite drift molded by deep Mediterranean Outflow. Geology 12:296–300

    Article  Google Scholar 

  • Giesche H (2006) Mercury porosimetry: a general (practical) overview. Part Part Syst Charact 23:9–19

    Article  Google Scholar 

  • Gingras MK, MacMillan B, Balcom BJ, Saunders T, Pemberton SG (2002) Using magnetic resonance imaging and petrographic techniques to understand the textural attributes and porosity distribution in Macaronichnus-burrowed sandstone. J Sed Res 72:552–558. https://doi.org/10.1306/122901720552

    Article  Google Scholar 

  • Gingras MK, Pemberton SG, Henk F, MacEachern JA, Mendoza C, Rostron B, O'Hare R, Spila M, Konhauser K (2007) Applications of ichnology to fluid and gas production in hydrocarbon reservoirs. In: MacEachern JA, Bann KL, Gingras MK, Pemberton SG (eds) Applied ichnology: SEPM Short Course Notes. vol. 52. pp. 129–143.

  • Gingras MK, Baniak G, Gordon J, Hovikoski J, Konhauser KO, La Croix A, Lemiski R, Mendoza C, Pemberton SG, Polo C, Zonneveld JP (2012) Porosity and permeability in bioturbated sediments. In: Knaust D Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Dev Sedimentol, vol 64. Elsevier, Amsterdam, pp. 837–864.

  • Gingras MK, Pemberton SG, Smith S (2015) Bioturbation: reworking sediments for better or worse. Oilfield Rev 26(4):46–58 (Winter 1014/2015)

    Google Scholar 

  • Gonthier E, Faugères J-C, Stow DAV (1984) Contourite facies of the Faro Drift, Gulf of Cadiz. In: Stow DAV, Piper DJW (eds) Fine grained sediments, deep-water processes and facies. Geol. Soc., London, Special Publication 15. pp. 275–291.

  • Gordon J, Pemberton G, Gingras M, Konhauser KO (2010) Biogenically enhanced permeability: a petrographic analysis of Macaronichnus segregatus in the lower cretaceous Bluesky formation, Alberta. Canada AAPG Bull 49(94):779–1795. https://doi.org/10.1306/04061009169

    Article  Google Scholar 

  • Hüneke H, Hernández-Molina FJ, Rodríguez-Tovar FJ, Llave E, Chiarella D, Mena A, Stow DAV (2020) Diagnostic criteria using microfacies for calcareous contourites, turbidites and pelagites in the Eocene–Miocene slope succession, southern Cyprus. Sedimentology. https://doi.org/10.1111/sed.12792

    Article  Google Scholar 

  • Knaust D (2009) Ichnology as a tool in carbonate reservoir characterization: a case study from the Permian-Triassic Khuff Formation in the Middle East. GeoArabia 14(3):17–38

    Article  Google Scholar 

  • Knaust D (2013) Classification of bioturbation-related reservoir quality in the khuff formation (Middle East): towards a genetic approach. In: Pöppelreiter M (ed) Permo-triassic sequence of the arabian plate. EAGE Publications, pp. 247–267.

  • Knaust D (2017) Atlas of trace fossils in well core: appearance, taxonomy and interpretation. Springer, Cham

    Book  Google Scholar 

  • Knaust D, Dorador J, Rodríguez-Tovar FJ (2020) Burrowed matrix powering dual porosity systems–a case study from the Maastrichtian chalk of the Gullfaks Field Norwegian. North Sea Mar Pet Geol 113:104158. https://doi.org/10.1016/j.marpetgeo.2019.104158

    Article  Google Scholar 

  • Kneller B (1995) Beyond the turbidite paradigm: physical models for deposition of turbidites and their implications for reservoir prediction. Geol Soc Spec Publ 94(1):31–49

    Article  Google Scholar 

  • La Croix AD, Gingras MK, Pemberton SG, Mendoza CA, MacEachern JA, Lemiski RT (2013) Biogenically enhanced reservoir properties in the Medicine Hat gas field, Alberta, Canada. Mar Pet Geol 43:464–477. https://doi.org/10.1016/j.marpetgeo.2012.12.002

    Article  Google Scholar 

  • La Croix AD, MacEachern JA, Ayranci K, Hsieh A, Dashtgard SE (2017) An ichnological-assemblage approach to reservoir heterogeneity assessment in bioturbated strata: insights from the Lower Cretaceous Viking Formation, Alberta, Canada. Mar Pet Geol 86:636–654. https://doi.org/10.1016/j.marpetgeo.2017.06.024

    Article  Google Scholar 

  • Liu H, Shi K, Liu B, Song X, Guo R, Li Y, Wang G, Wang H, Shen Y (2019) Characterization and identification of bioturbation-associated high permeability zones in carbonate reservoirs of Upper Cretaceous Khasib Formation, AD oilfield, central Mesopotamian Basin, Iraq. Mar Pet Geol 110:747–767. https://doi.org/10.1016/j.marpetgeo.2019.07.049

    Article  Google Scholar 

  • Lock BE, Peschier L (2006) Boquillas (Eagle Ford) upper slope sediments, West Texas: outcrop analogs for potential shale reservoirs. Gulf Coast Assoc Geol Soc Trans 56:491–508

    Google Scholar 

  • Loucks RG, Ruppel SC (2007) Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin. Texas AAPG Bull 91(4):579–601

    Article  Google Scholar 

  • Mayall M, Jones E, Casey M (2006) Turbidite channel reservoirs—key elements in facies prediction and effective development. Mar Pet Geol 23(8):821–841

    Article  Google Scholar 

  • Miguez-Salas O, Rodríguez-Tovar FJ (2019a) Stable deep-sea macrobenthic trace maker associations in disturbed environments from the Eocene Lefkara Formation, Cyprus. Geobios 52:37–45. https://doi.org/10.1016/j.geobios.2018.11.002

    Article  Google Scholar 

  • Miguez-Salas O, Rodríguez-Tovar FJ (2019b) Ichnofacies distribution in the Eocene–early Miocene Petra Tou Romiou outcrop, Cyprus: sea level dynamics and palaeoenvironmental implications in a contourite environment. Int J Earth Sci. https://doi.org/10.1007/s00531-019-01775-x

    Article  Google Scholar 

  • Miguez-Salas O, Rodríguez-Tovar FJ (2021) Trace fossil analysis of sandy clastic contouritic deposits in the late Miocene Rifian Corridor (Morocco): ichnotaxonomical and palaeoenvironmental insights. J African Earth Sci 174:104054. https://doi.org/10.1016/j.jafrearsci.2020.104054

    Article  Google Scholar 

  • Miguez-Salas O, Dorador J, Rodríguez-Tovar FJ (2019) Introducing Fiji and ICY image processing techniques in ichnological research as a tool for sedimentary basin analysis. Mar Geol 413:1–9. https://doi.org/10.1016/j.margeo.2019.03.013

    Article  Google Scholar 

  • Miguez-Salas O, Rodríguez-Tovar FJ, de Weger W (2020) Macaronichnus and contourite depositional settings: Bottom currents and nutrients as coupling factors. Palaeogeogr Palaeoclimatol Palaeoecol 545:109639. https://doi.org/10.1016/j.palaeo.2020.109639

    Article  Google Scholar 

  • Miguez-Salas O, Rodríguez-Tovar FJ, de Weger W (2021a) The Late Miocene Rifian corridor as a natural laboratory to explore a case of ichnofacies distribution in ancient gateways. Sci Rep 11(1):1–10. https://doi.org/10.1038/s41598-021-83820-x

    Article  Google Scholar 

  • Miguez-Salas O, Dorador J, Rodríguez-Tovar FJ, Linares F (2021b) X-ray microtomography analysis to approach bioturbation´s influence on minor-scale porosity distribution: a novel approach in contourite deposits. J Pet Sci Eng. https://doi.org/10.1016/j.petrol.2021.109251

    Article  Google Scholar 

  • Molina E, Cultrone G, Sebastián E, Alonso FJ, Carrizo L, Gisbert J, Buj O (2011) The pore system of sedimentary rocks as a key factor in the durability of building materials. Eng Geol 118:110–121

    Article  Google Scholar 

  • Pemberton SG, Gingras MK (2005) Classification and characterizations of biogenically enhanced permeability. AAPG Bull 89:1493–1517

    Article  Google Scholar 

  • Pirard R, Alié C, Pirard JP (2002) Characterization of porous texture of hyperporous materials by mercury porosimetry using densification equation. Powder Technol 128:242–247

    Article  Google Scholar 

  • Quaye JA, Jiang Z, Zhou X (2019) Bioturbation influence on reservoir rock quality: a case study of Well Bian-5 from the second member Paleocene Funing Formation in the Jinhu sag, Subei basin, China. J Pet Sci Eng 172:1165–1173. https://doi.org/10.1016/j.petrol.2018.09.026

    Article  Google Scholar 

  • Rebesco M, Hernández-Molina FJ, Van Rooij D, Wåhlin A (2014) Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations. Mar Geol 352:111–154

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Hernández-Molina FJ (2018) Ichnological analysis of contourites: past, present and future. Earth Sci Rev 183:28–41. https://doi.org/10.1016/j.earscirev.2018.05.008

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Hernández-Molina FJ, Hüneke H, Llave E, Stow DAV (2019a) Contourite facies model: improving contourite characterization based on the ichnological analysis. Sed Geol 384:60–69

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Hernández-Molina FJ, Hüneke H, Chiarella D, Llave E, Mena A, Miguez-Salas O, Dorador J, De Castro S, Stow DAV (2019b) Key evidence for distal turbiditic-and bottom-current interactions from tubular turbidite inflls. Palaeogeogr Palaeoclimatol Palaeoecol 533:109233. https://doi.org/10.1016/j.palaeo.2019.109233

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Miguez-Salas O, Dorador J (2021) Mercury intrusion porosimetry to evaluate the incidence of bioturbation on porosity of contourites. Riv Ital Paleotol. https://doi.org/10.13130/2039-4942/15208

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY (2012) Fiji: an open source platform for biological-image analysis. Nat Methods 9(7):676. https://doi.org/10.1038/nmeth.2019

    Article  Google Scholar 

  • Shanmugam G (2017) The contourite problem. In: Mazumder R (ed) Sediment provenance. Elsevier, pp 183–254

    Chapter  Google Scholar 

  • Stow DAV, Holbrook JA (1984) North Atlantic contourites: an overview. In: Stow DAV, Piper DJW (eds) Fine grained sediments, deep-water processes and facies. Geol. Soc., London, Special Publication 15, pp. 245–256.

  • Stow DAV, Johansson M (2000) Deep-water massive sands: nature, origin and hydrocarbon implications. Mar Pet Geol 17(2):145–174

    Article  Google Scholar 

  • Stow DAV, Kahler G, Reeder M (2002) Fossil contourites: type example from an Oligocene palaeoslope system. Cyprus Geol Soc Lond Mem 22(1):443–455. https://doi.org/10.1144/GSL.MEM.2002.022.01.31

    Article  Google Scholar 

  • Tonkin NS, McIlroy D, Meyer R, Moore-Turpin A (2010) Bioturbation influence on reservoir quality: a case study from the Cretaceous Ben Nevis Formation, Jeanne d’Arc Basin, offshore Newfoundland, Canada. AAPG Bull 94:1059–1078. https://doi.org/10.1306/12090909064

    Article  Google Scholar 

  • Viana AR (2008) Economic relevance of contourites. In: Rebesco M, Camerlenghi A (eds) Contourites. Dev Sedimentol, vol 60. Elsevier, Amsterdam, pp. 493–510.

  • Viana AR, Rebesco M (2007) Economic and palaeoceanographic significance of contourite deposits. Geol Soc London Special Publication.

  • Yu X, Stow DAV, Smillie Z, Esentia I, Brackenridge R, Xie X, Bankole S, Ducassou E, Llave E (2020) Contourite porosity, grain size and reservoir characteristics. Mar Pet Geol. https://doi.org/10.1016/j.marpetgeo.2020.104392

    Article  Google Scholar 

  • Zhang X, Liu B, Wang J, Zhang Z, Shi K, Wu S (2014) Adobe photoshop quantification (PSQ) rather than point-counting: a rapid and precise method for quantifying rock textural data and porosities. Comp Geo 69:62–71

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Projects CGL2015-66835-P and PID2019-104625RB-100 (Secretaría de Estado de I+D+I, Spain), B-RNM-072-UGR18 (FEDER Andalucía), and P18-RT-4074 (Junta de Andalucía), and Scientific Excellence Unit UCE-2016-05 (Universidad de Granada). The research of Olmo Miguez-Salas is funded through a pre-doctoral grant from the Ministerio de Educación, Cultura y Deporte (Gobierno de España). The research by Javier Dorador was funded through. The Juan de la Cierva Program (IJC2019-038866-I) by the Spanish Ministry of Science and Innovation. The research was conducted within the “Ichnology and Palaeoenvironment Research Group” (UGR). We thank Dr. Kießling (Editor-in-chief) and the constructive comments of two anonymous referees who helped us to improve the clarity of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olmo Miguez-Salas.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Olmo Miguez-Salas on behalf of all co-authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miguez-Salas, O., Dorador, J. & Rodríguez-Tovar, F.J. Multi-technique comparison to assess the effect of bioturbation on porosity: a study case for reservoir quality in contourites. Facies 68, 11 (2022). https://doi.org/10.1007/s10347-022-00650-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-022-00650-7

Keywords

Navigation