Skip to main content
Log in

Preparation of polydopamine-coated TiO2 composites for photocatalytic removal of gaseous ammonia under 405 nm violet-blue light

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Although photocatalytic reactions using the ultraviolet (UV) range (particularly UV B (280–320 nm) wavelengths) is well-established, the photocatalytic effect of longer wavelengths (especially that of UVA (≥380 nm) and visible light (≥400 nm)) have only recently been studied and utilized for environmental applications. In this work, we coated polydopamine (PDA) and TiO2 on a support and investigated the synergistic effects of the corresponding composites for the photocatalytic removal of gaseous ammonia under 405 nm violet-blue light. The PDA layer with TiO2 was covalently attached on a ceramic ball using the drop-casting method. The roughness and functional groups of the TiO2-PDA coated ball surfaces were verified using an infrared imaging microscope and field emission scanning electron microscope (FE-SEM). The photocatalytic activity of the obtained hybrid TiO2-PDA coated ball for the removal of ammonia was investigated using a UV C and 405 nm LED lamp at 24 °C. The results showed that both the TiO2 (control sample) and TiO2-PDA coated balls successfully removed ammonia under similar experimental conditions with the 254 nm UV C lamp. Notably, the TiO2-PDA coated ball exhibited an enhanced ammonia removal efficiency of 72% under 405 nm LED light irradiation. Thus, the TiO2-PDA coated ball is a promising indoor air cleaning technique under LED light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Sanches, J. H. Flores and M. I. P. Silva, Mater. Res. Bull., 109, 82 (2019).

    Article  CAS  Google Scholar 

  2. V. Likodimos, Appl. Catal. B., 230, 269 (2018).

    Article  CAS  Google Scholar 

  3. L. Zhang, L. Xu, J. He and J. Zhang, Electrochim. Acta, 117, 192 (2014).

    Article  CAS  Google Scholar 

  4. S. Hernández, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, V. Cauda, E. Tresso and G. Saracco, Phys. Chem. Chem. Phys., 17, 7775 (2015).

    Article  Google Scholar 

  5. L. Xiaoya, X. Jingang, L. Lingyuan, J. Xiang and F. Heqing, Int. J. Polym. Mater., 66, 835 (2017).

    Article  Google Scholar 

  6. S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. V. Tendeloo, S. Lacombe, J. A. Martens and S. Lenaerts, Appl. Catal. B., 156–157, 116 (2014).

    Article  Google Scholar 

  7. E. Vasilaki, I. Georgaki, D. Vernardou, M. Vamvakaki and N. Katsarakis, Appl. Surf. Sci., 353, 865 (2015).

    Article  CAS  Google Scholar 

  8. Y. Liang, H. Wang, H. Sanchez Casalongue, Z. Chen and H. Dai, Nano Res., 3, 701 (2010).

    Article  CAS  Google Scholar 

  9. S.-M. Chiu, Z.-S. Chen, K.-Y. Yang, Y.-L. Hsu and D. Gan, J. Mater. Process. Technol., 192–193, 60 (2007).

    Article  Google Scholar 

  10. Z. M. Mahdieh, S. Shekarriz and F. A. Taromi, Fibers Polym., 22, 87 (2021).

    Article  CAS  Google Scholar 

  11. A.-L. Pénard, T. Gacoin and J.-P. Boilot, Acc. Chem. Res., 40(9), 895 (2007).

    Article  Google Scholar 

  12. W-D. Münz, F. J. M. Hauzer, D. Schulze and B. Buil, Surf. Coat. Technol., 49(1–3), 161 (1991).

    Article  Google Scholar 

  13. B. Mahltig and A. Fischer, J. Polym. Sci. B Polym. Phys., 48, 1562 (2010).

    Article  CAS  Google Scholar 

  14. W.-Z. Qiu, H.-C. Yang and Z.-K. Xu, Adv. Colloid. Interface Sci., 256, 111 (2018).

    Article  CAS  Google Scholar 

  15. G. E. Gu, C. S. Park, H.-J. Cho, T. H. Ha, J. Bae, O. S. Kwon, J.-S. Lee and C.-S. Lee, Sci. Rep., 8(1), 4393 (2018).

    Article  Google Scholar 

  16. H. Lee, S. M. Dellatore, W. M. Miller and P. B. Messersmith, Science (New York, N.Y.), 318(5849), 426 (2007).

    Article  CAS  Google Scholar 

  17. J.-J. Lee, I.-S. Park, G.-S. Shin, S.-K. Lyu, S.-G. Ahn, T.-S. Bae and M.-H. Lee, Int. J. Precision Eng. Manufacturing, 15(8), 1647 (2014).

    Article  Google Scholar 

  18. M. Lee, S. H. Ku, J. Ryu and C. B. Park, J. Mater. Chem., 20(40), 8848 (2010).

    Article  CAS  Google Scholar 

  19. M. Lee, J. Wi, J. A. Koziel, H. Ahn, P. Li, B. Chen, Z. Meiirkhanuly, C. Banik and W. Jenks, Atmosphere, 11(3), 283 (2020).

    Article  CAS  Google Scholar 

  20. D. L. Maurer and J. A. Koziel, Chemosphere, 221, 778 (2019).

    Article  CAS  Google Scholar 

  21. M. Guarino, A. Costa and M. Porro, Bioresour. Technol., 99(7), 2650 (2008).

    Article  CAS  Google Scholar 

  22. S. V. Kite, A. N. Kadam, D. J. Sathe, S. Patil, S. S. Mali, C. K. Hong, S.-W. Lee and K. M. Garadkar, ACS Omega, 6(26), 17071 (2021).

    Article  CAS  Google Scholar 

  23. N. F. Della Vecchia, A. Luchini, A. Napolitano, G. D’Errico, G. Vitiello, N. Szekely, M. d’Ischia and L. Paduano, Langmuir, 30(32), 9811 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grand funded by the Ministry of Land, Infrastructure and Transport (Grant 20CTAP-C157292-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan-gyu Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pak, SH., Park, J.H. & Park, Cg. Preparation of polydopamine-coated TiO2 composites for photocatalytic removal of gaseous ammonia under 405 nm violet-blue light. Korean J. Chem. Eng. 39, 1863–1871 (2022). https://doi.org/10.1007/s11814-022-1122-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1122-3

Keywords

Navigation