Skip to main content
Log in

The Orthogonal Branching Problem for Symplectic Monogenics

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In this paper we study the \(\mathfrak {sp}(2m)\)-invariant Dirac operator \(D_s\) which acts on symplectic spinors, from an orthogonal point of view. By this we mean that we will focus on the subalgebra \(\mathfrak {so}(m) \subset \mathfrak {sp}(2m)\), as this will allow us to derive branching rules for the space of 1-homogeneous polynomial solutions for the operator \(D_s\) (hence generalising the classical Fischer decomposition in harmonic analysis for a vector variable in \({\mathbb {R}}^m\)). To arrive at this result we use techniques from representation theory, including the transvector algebra \({\mathcal {Z}}(\mathfrak {sp}(4),\mathfrak {so}(4))\) and tensor products of Verma modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergeron, N., Millson, J.J., Ralston, J.: The relative Lie algebra cohomology of the Weil representation of \(\text{SO}(n, 1)\). arXiv preprint (2014)

  2. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Research Notes in Mathematics, vol. 76. Pitman, London (1982)

    MATH  Google Scholar 

  3. Brackx, F., Schepper, H.D., Eelbode, D., Lávička, R., Souček, V.: Fischer decomposition for \(\mathfrak{osp}(4|2)\)-monogenics in quaternionic Clifford analysis. Math. Methods Appl. Sci. 39(16), 4874–4891 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  4. Crumeyrolle, A.: Symplectic Clifford Algebras. Clifford Algebras and Their Applications in Mathematical Physics, Springer, Dordrecht (1986)

    Book  Google Scholar 

  5. De Bie, H., Somberg, P., Souček, V.: The metaplectic Howe duality and polynomial solutions for the symplectic Dirac operator. J. Geom. Phys. 75, 120–128 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  6. De Bie, H., Eelbode, D., Roels, M.: The harmonic transvector algebra in two vector variables. J. Algebra 473, 247–282 (2017)

    Article  MathSciNet  Google Scholar 

  7. De Bie, H., Holíková, M., Somberg, P.: Basic aspects of symplectic Clifford analysis for the symplectic Dirac operator. Adv. Appl. Clifford Algebras 27(2), 1103–1132 (2017)

    Article  MathSciNet  Google Scholar 

  8. Delanghe, R., Sommen, F., Souček, S.: Clifford Algebra and Spinor-Valued Functions. Springer, Berlin (1992)

    Book  Google Scholar 

  9. Frahm, J., Weiske, C.: Symmetry breaking operators for real reductive groups of rank one. J. Funct. Anal. 279(5) (2020)

  10. Gilbert, J., Murray, M.: Clifford algebras and Dirac operators in harmonic analysis (No. 26). Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  11. Goodman, R.: Multiplicity-free spaces and Schur–Weyl–Howe duality. Representations of Real and p-adic Groups 2, 305–415 (2004)

    Article  MathSciNet  Google Scholar 

  12. Goodman, R., Wallach, N.R.: Symmetry, Representations, and Invariants. Springer, Dordrecht (2009)

    Book  Google Scholar 

  13. Habermann, K., Habermann, L.: Introduction to symplectic Dirac operators. Springer, Heidelberg (2006)

    Book  Google Scholar 

  14. Holíková, M: Symplectic spin geometry. Doctoral dissertation, Charles University, Prague, Czech Republic (2016)

  15. Howe, R., Tan, E.C., Willenbring, J.: Stable branching rules for classical symmetric pairs. Trans. Am. Math. Soc. 357(4), 1601–1626 (2005)

    Article  MathSciNet  Google Scholar 

  16. Klimyk, A.U.: Infinitesimal operators for representations of complex Lie groups and Clebsch–Gordan coefficients for compact groups. J. Phys. A Math. Gen. 15(10), 3009 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kostant, B.: Symplectic spinors. Rome Symp. XIV, 139–152 (1974)

    MathSciNet  MATH  Google Scholar 

  18. Krýsl, S.: Howe duality for the metaplectic group acting on symplectic spinor valued forms. J. Lie theory 22(4), 1049–1063 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Lávička, R.: Separation of Variables in the Semistable Range. Topics in Clifford Analysis Topics in Clifford Analysis Topics in Clifford Analysis, Birkhäuser, Cham (2019)

  20. Reuter, M.: Symplectic Dirac–Kähler fields. J. Math. Phys. 40(11), 5593–5640 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  21. Van Lancker, P., Sommen, F., Constales, D.: Models for irreducible representations of \({\sf Spin} (m)\). Adv. Appl. Clifford Algebras 11(1), 271–289 (2001)

    Article  MathSciNet  Google Scholar 

  22. Zhelobenko, D.P.: Extremal projectors and generalized Mickelsson algebras over reductive Lie algebras. Math. USSR-Izvestiya 33(1), 85–100 (1989)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author G. Muarem was supported by the FWO-EoS project G0H4518N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guner Muarem.

Additional information

Communicated by Uwe Kaehler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eelbode, D., Muarem, G. The Orthogonal Branching Problem for Symplectic Monogenics. Adv. Appl. Clifford Algebras 32, 32 (2022). https://doi.org/10.1007/s00006-022-01215-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-022-01215-1

Keywords

Mathematics Subject Classification

Navigation