Skip to main content
Log in

Empirical likelihood based tests for detecting the presence of significant predictors in marginal quantile regression

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

This article investigates detecting the presence of significant predictors in marginal quantile regression. The main idea comes from the connection between the quantile correlation and the slope parameter of the marginal quantile regression, which is quite different from other methods. By introducing the local linear model and the plug-in empirical likelihood method, consistent asymptotic distribution and its adjusted version are obtained. We not only circumvent the non-regularity encountered by post-model-selected estimators but also make the results more concise. Two adaptive resampling test procedures are proposed in practice by comparing the t-statistics with a threshold to decide whether to use the traditional centered percentile bootstrap or otherwise adapt to the asymptotic distribution under the local model. Simulation studies compare these two resampling tests with other competing methods in several cases. Results show that the approaches proposed are more robust for each quantile level and can control type I error well. Two real datasets from Forbes magazine and the HIV drug resistance database are also applied to illustrate the new methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berk R, Brown L, Buja A, Zhang K, Zhao L et al (2013) Valid post-selection inference. Ann Stat 41(2):802–837

    Article  MATH  Google Scholar 

  • Breiman L (1992) The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error. J Am Stat Assoc 87(419):738–754

    Article  MATH  Google Scholar 

  • Chang J, Yong TC, Wu TT et al (2018) A new scope of penalized empirical likelihood with high-dimensional estimating equations. Ann Stat 46(6):3185–3216

    MATH  Google Scholar 

  • Chen J, Chen Z (2008) Extended Bayesian information criteria for model selection with large model spaces. Biometrika 95(3):759–771

    Article  MATH  Google Scholar 

  • Chen J, Lazar NA (2012) Selection of working correlation structure in generalized estimating equations via empirical likelihood. J Comput Graph Stat 21(1):18–41

    Article  Google Scholar 

  • Chen C, Shen B, Zhang L, Xue Y, Wang M (2019) Empirical-likelihood-based criteria for model selection on marginal analysis of longitudinal data with dropout missingness. Biometrics 75(3):950–965

    Article  MATH  Google Scholar 

  • Chen C, Wang M, Wu R, Li R (2020) A robust consistent information criterion for model selection based on empirical likelihood. arXiv preprint arXiv:2006.13281

  • Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96(456):1348–1360

    Article  MATH  Google Scholar 

  • Fan J, Lv J (2008) Sure independence screening for ultrahigh dimensional feature space. J R Stat Soc Ser B (Stat Methodol) 70(5):849–911

    Article  MATH  Google Scholar 

  • Fan J, Lv J (2010) A selective overview of variable selection in high dimensional feature space. Statistica Sinica 20(1):101

    MATH  Google Scholar 

  • Hall P, Sheather SJ (1988) On the distribution of a studentized quantile. J Roy Stat Soc Ser B (Methodol) 50(3):381–391

    MATH  Google Scholar 

  • Huang J, Ma S, Zhang C-H (2008) Adaptive Lasso for sparse high-dimensional regression models. Statistica Sinica 1603–1618

  • Kolaczyk ED (1995) An information criterion for empirical likelihood with general estimating equations. Unpublished manuscript, Department of Statistics, University of Chicago

  • Leng C, Tong X (2014) Censored quantile regression via Box-Cox transformation under conditional independence. Statistica Sinica 24(1):221–249

    MATH  Google Scholar 

  • Li R, Zhong W, Zhu L (2012) Feature screening via distance correlation learning. J Am Stat Assoc 107(499):1129–1139

    Article  MATH  Google Scholar 

  • Li G, Li Y, Tsai C-L (2015) Quantile correlations and quantile autoregressive modeling. J Am Stat Assoc 110(509):246–261

    Article  MATH  Google Scholar 

  • Liu Y, Chen X (2020) A new robust model-free feature screening method for ultra-high dimensional right censored data. Commun Stat Theory Methods 1–19

  • Ma X, Zhang J (2016) Robust model-free feature screening via quantile correlation. J Multivariate Anal 143:472–480

    Article  MATH  Google Scholar 

  • Ma S, Li R, Tsai C-L (2017) Variable screening via quantile partial correlation. J Am Stat Assoc 112(518):650–663

    Article  Google Scholar 

  • McKeague IW, Qian M (2015) An adaptive resampling test for detecting the presence of significant predictors. J Am Stat Assoc 110(512):1422–1433

    Article  MATH  Google Scholar 

  • Owen AB (2001) Empirical likelihood. CRC Press, Cambridge

    MATH  Google Scholar 

  • Pan J, Zhang S, Zhou Y (2019) Variable screening for ultrahigh dimensional censored quantile regression. J Stat Comput Simul 89(3):395–413

    Article  MATH  Google Scholar 

  • Tang CY, Leng C (2010) Penalized high-dimensional empirical likelihood. Biometrika 97(4):905–920

    Article  MATH  Google Scholar 

  • Variyath AM, Chen J, Abraham B (2010) Empirical likelihood based variable selection. J Stat Plan Inference 140(4):971–981

    Article  MATH  Google Scholar 

  • Wang Q-H, Jing B-Y (2001) Empirical likelihood for a class of functionals of survival distribution with censored data. Ann Inst Stat Math 53(3):517–527

    Article  MATH  Google Scholar 

  • Wang HJ, Wang L (2009) Locally weighted censored quantile regression. J Am Stat Assoc 104(487):1117–1128

    Article  MATH  Google Scholar 

  • Wang HJ, McKeague IW, Qian M (2018) Testing for marginal linear effects in quantile regression. J R Stat Soc Ser B (Stat Methodol) 80(2):433–452

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songqiao Tang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by grants from the NSF of China (Grant No. 11731012), Ten Thousands Talents Plan of Zhejiang Province (Grant No. 2018R52042) and the Fundamental Research Funds for the Central Universities.

Technical proofs of main results

Technical proofs of main results

To prove Theorem 1, we need the following two lemmas.

Lemma 1

If Assumptions 1–4 hold, we have

Lemma 2

If assumptions in Theorem 1 hold, we have \(\frac{1}{n}\sum _{i=1}^n(\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau )^2{\mathop {\longrightarrow }\limits ^{p}}{\left\{ \begin{array}{ll} \sigma _1^2 &{} \text {if}~\varvec{\beta }_0\ne \varvec{0}\\ \sigma _2^2 &{} \text {if}~\varvec{\beta }_0=\varvec{0} \end{array}\right. }\).

Proof of Lemma 1

On the one hand, when \(\varvec{\beta }_0\ne \varvec{0}\), it is clear that \(\varvec{\beta }_n\rightarrow \varvec{\beta }_0\). From Li et al. (2015, Theorem 1) we have

$$\begin{aligned}&(\widehat{\text {qcor}}_\tau \{Y,X_1\},\ldots ,\widehat{\text {qcor}}_\tau \{Y,X_p\})^T\\&\qquad {\mathop {\longrightarrow }\limits ^{p}}(\text {qcor}_\tau \{Y,X_1\},\ldots ,\text {qcor}_\tau \{Y,X_p\})^T, \quad k=1,\ldots ,p. \end{aligned}$$

Since

$$\begin{aligned} \hat{k}_n=\arg \max _{k=1,\ldots ,p}\widehat{\text {qcor}}_\tau \{Y,X_k\},~ k_0=\arg \max _{k=1,\ldots ,p}\text {qcor}_\tau \{Y,X_k\}, \end{aligned}$$

we have \(\hat{k}_n{\mathop {\rightarrow }\limits ^{p}}k_0\). Then from Li et al. (2015, Theorem 1),

$$\begin{aligned}&\sqrt{n}(\widehat{\text {qcov}}_\tau -\text {qcov}_\tau )\\&\quad =\sqrt{n}(\widehat{\text {qcov}}_\tau \{Y,X_{\hat{k}_n}\}-\text {qcov}_\tau \{Y,X_{k_0}\})\\&\quad =\sqrt{n}(\widehat{\text {qcov}}_\tau \{Y,X_{k_0}\}-\text {qcov}_\tau \{Y,X_{k_0}\})+o_p(1)\\&\quad =\frac{1}{\sqrt{n}}\sum _{i=1}^n[\psi _\tau (Y_i-Q_{\tau ,Y})(X_{i,k_0}-\mu _{X_{k_0}|Y})-\text {qcov}_\tau \{Y,X_{k_0}\}]+o_p(1)\\&\quad =\frac{1}{\sqrt{n}}\sum _{i=1}^n[\psi _\tau (\varvec{X}_i^T\varvec{\beta }_n+\epsilon -Q_{\tau ,\varvec{X}_i^T\varvec{\beta }_n+\epsilon })(X_{i,k_0}-\mu _{X_{k_0}|Y})\\&\quad \quad -\text {qcov}_\tau \{\varvec{X}^T\varvec{\beta }_n+\epsilon ,X_{k_0}\}]+o_p(1)\\&\quad =\frac{1}{\sqrt{n}}\sum _{i=1}^n[\psi _\tau (\varvec{X}_i^T\varvec{\beta }_0+\epsilon -Q_{\tau ,\varvec{X}_i^T\varvec{\beta }_0+\epsilon })(X_{i,k_0}-\mu _{X_{k_0}|Y})\\&\quad \quad -\text {qcov}_\tau \{\varvec{X}^T\varvec{\beta }_0+\epsilon ,X_{k_0}\}]+o_p(1). \end{aligned}$$

Hence if \(\varvec{\beta }_0\ne \varvec{0}\),

$$\begin{aligned} \sqrt{n}(\widehat{\text {qcov}}_\tau -\text {qcov}_\tau ){\mathop {\longrightarrow }\limits ^{d}}M_{k_0}(\varvec{\beta }_0). \end{aligned}$$

On the other hand, because \(\varvec{\beta }_n=\varvec{\beta }_0+\frac{1}{\sqrt{n}}\varvec{b}_0\), we have

$$\begin{aligned} \begin{aligned}&\sqrt{n}\widehat{\text {qcov}}_\tau \{Y,X_k\}\\&\quad =\sqrt{n}\bigg [\frac{1}{n}\sum _{i=1}^n\psi _\tau \bigg (\varvec{X}_i^T(\varvec{\beta }_0+\frac{1}{\sqrt{n}}\varvec{b}_0)+\epsilon _i-\hat{Q}_{\tau ,\varvec{X}^T(\varvec{\beta }_0+\frac{1}{\sqrt{n}}\varvec{b}_0)+\epsilon }\bigg )(X_{i,k}-\bar{X}_k)\bigg ].\\ \end{aligned} \end{aligned}$$

Hence if \(\varvec{\beta }_0=\varvec{0}\),

$$\begin{aligned} \begin{aligned}&\sqrt{n}\widehat{\text {qcov}}_\tau \{Y,X_k\}\\&\quad =\sqrt{n}\bigg [\frac{1}{n}\sum _{i=1}^n\psi _\tau \left( \frac{1}{\sqrt{n}}\varvec{X}_i^T\varvec{b}_0+\epsilon _i-\hat{Q}_{\tau ,\frac{1}{\sqrt{n}}\varvec{X}^T\varvec{b}_0+\epsilon }\right) (X_{i,k}-\bar{X}_k)\bigg ]\\&\quad =\sqrt{n}\bigg \{\bigg [\frac{1}{n}\sum _{i=1}^n\psi _\tau \left( \frac{1}{\sqrt{n}}\varvec{X}_i^T\varvec{b}_0+\epsilon _i-\hat{Q}_{\tau ,\frac{1}{\sqrt{n}}\varvec{X}^T\varvec{b}_0+\epsilon }\right) (X_{i,k}-\bar{X}_k)\\&\qquad -\frac{1}{n}\sum _{i=1}^n\psi _\tau (\epsilon _i-\hat{Q}_{\tau ,\epsilon })(X_{i,k}-\bar{X}_k)\bigg ]+\bigg [\frac{1}{n}\sum _{i=1}^n\psi _\tau (\epsilon _i-\hat{Q}_{\tau ,\epsilon })(X_{i,k}-\bar{X}_k)\\&\qquad -E\psi _\tau (\epsilon -Q_{\tau ,\epsilon })(X_k-EX_k)\bigg ]\bigg \}. \end{aligned} \end{aligned}$$

The last step is obtained by the fact that \(E\psi _\tau (\epsilon -Q_{\tau ,\epsilon })(X_k-EX_k)=0\). Thus we can divide \(\sqrt{n}\widehat{\text {qcov}}_\tau \{Y,X_k\}\) into two parts. The first part is

$$\begin{aligned} \begin{aligned}&\sqrt{n}\bigg \{\frac{1}{n}\sum _{i=1}^n\left[ \psi _\tau \left( \frac{1}{\sqrt{n}}\varvec{X}_i^T\varvec{b}_0+\epsilon _i-\hat{Q}_{\tau ,\frac{1}{\sqrt{n}}\varvec{X}^T\varvec{b}_0+\epsilon }\right) (X_{i,k}-\bar{X}_{k})\right] \\&\qquad -\frac{1}{n}\sum _{i=1}^n\bigg [\psi _\tau (\epsilon _i-\hat{Q}_{\tau ,\epsilon })(X_{i,k}-\bar{X}_{k})\bigg ]\bigg \} \end{aligned} \end{aligned}$$
(A.1)

and the second part is

$$\begin{aligned} \begin{aligned}&\sqrt{n}\bigg \{\big \{\frac{1}{n}\sum _{i=1}^n\big [\psi _\tau (\epsilon _i-\hat{Q}_{\tau ,\epsilon })(X_{i,k}-\bar{X}_{k})\big ]-E\big [\psi _\tau (\epsilon -Q_{\tau ,\epsilon })(X_{k}-EX_{k})\big ]\big \}\bigg \}. \end{aligned} \end{aligned}$$
(A.2)

We replace \(Q_{\tau ,\frac{1}{\sqrt{n}}\varvec{X}^T\varvec{b}_0+\epsilon }\), \(\hat{Q}_{\tau ,\frac{1}{\sqrt{n}}\varvec{X}^T\varvec{b}_0+\epsilon }\) with \(Q_{\tau ,\varvec{Z}}\), \(\hat{Q}_{\tau ,\varvec{Z}}\) respectively for the sake of simplicity.

For the first term,

$$\begin{aligned} \begin{aligned}&\sqrt{n}\bigg \{\frac{1}{n}\sum _{i=1}^n\left[ \psi _\tau \left( \frac{1}{\sqrt{n}}\varvec{X}_i^T\varvec{b}_0+\epsilon _i-\hat{Q}_{\tau ,\varvec{Z}}\right) (X_{i,k}-\bar{X}_{k})\right] \\&\qquad -\frac{1}{n}\sum _{i=1}^n\big [\psi _\tau (\epsilon _i-\hat{Q}_{\tau ,\epsilon })(X_{i,k}-\bar{X}_{k})\big ]\bigg \}\\&\quad =\sqrt{n}\bigg \{\frac{1}{n}\sum _{i=1}^n\left[ \psi _\tau \left( \frac{1}{\sqrt{n}}\varvec{X}_i^T\varvec{b}_0+\epsilon _i-\hat{Q}_{\tau ,\varvec{Z}})(X_{i,k}-\bar{X}_{k}\right) \right] \\&\qquad -\frac{1}{n}\sum _{i=1}^n\big [\psi _\tau (\epsilon _i-\hat{Q}_{\tau ,\varvec{Z}})(X_{i,k}-\bar{X}_{k})\big ]\bigg \}+o_p(1)\\&\quad =\sqrt{n}\left\{ \frac{1}{n}\sum _{i=1}^n\left[ \psi _\tau \left( \frac{1}{\sqrt{n}}\varvec{X}_i^T\varvec{b}_0+\epsilon _i-\hat{Q}_{\tau ,\varvec{Z}}\right) -\psi _\tau (\epsilon _i-\hat{Q}_{\tau ,\varvec{Z}})\right] (X_{i,k}-\bar{X}_{k})\right\} \\&\qquad +o_p(1). \end{aligned} \end{aligned}$$

Let

$$\begin{aligned}&g_\tau (\varvec{X}_i^T\varvec{b}_0,\epsilon _i,\hat{Q}_{\tau ,\varvec{Z}})\\&\quad =\psi _\tau \left( \frac{1}{\sqrt{n}}\varvec{X}_i^T\varvec{b}_0+\epsilon _i-\hat{Q}_{\tau ,\varvec{Z}})-\psi _\tau (\epsilon _i-\hat{Q}_{\tau ,\varvec{Z}}\right) \\&\quad =I\left( -\frac{1}{\sqrt{n}}\varvec{X}_i^T\varvec{b}_0<\epsilon _i-\hat{Q}_{\tau ,\varvec{Z}}<0)-I(-\frac{1}{\sqrt{n}}\varvec{X}_i^T\varvec{b}_0>\epsilon _i-\hat{Q}_{\tau ,\varvec{Z}}>0\right) \end{aligned}$$

and let

$$\begin{aligned} \zeta _n=\frac{1}{\sqrt{n}}\sum _{i=1}^n\{g_\tau (\varvec{X}_i^T\varvec{b}_0,\epsilon _i,\hat{Q}_{\tau ,\varvec{Z}})-E[g_\tau (\varvec{X}_i^T\varvec{b}_0,\epsilon _i,\hat{Q}_{\tau ,\varvec{Z}})|\varvec{X}_i]\}X_{i,k}, \end{aligned}$$

where

$$\begin{aligned}&E[g_\tau (\varvec{X}_i^T\varvec{b}_0,\epsilon _i,\hat{Q}_{\tau ,\varvec{Z}})|\varvec{X}_i]\\&\quad =E\left. \left[ I\left( -\frac{1}{\sqrt{n}}\varvec{X}_i^T\varvec{b}_0<\epsilon _i-\hat{Q}_{\tau ,\varvec{Z}}<0\right) -I\left( -\frac{1}{\sqrt{n}}\varvec{X}_i^T\varvec{b}_0>\epsilon _i-\hat{Q}_{\tau ,\varvec{Z}}>0\right) \right| \varvec{X}_i\right] \\&\quad =\int _{-\frac{1}{\sqrt{n}}\varvec{X}_i^T\varvec{b}_0+\hat{Q}_{\tau ,\varvec{Z}}}^{\hat{Q}_{\tau ,\varvec{Z}}}f_{\epsilon |\varvec{X}_i}(t)dt. \end{aligned}$$

It is clear that \(E\zeta _n=0\). From Hölder’s inequality,

$$\begin{aligned} \begin{aligned} E[\zeta _n]^2\le&E[g_\tau (\varvec{X}_i^T\varvec{b}_0,\epsilon _i,\hat{Q}_{\tau ,\varvec{Z}})X_{i,k}]^2\\ \le&[P(|\epsilon _i-\hat{Q}_{\tau ,\varvec{Z}}|<1/\sqrt{n}\varvec{X}_i^T\varvec{b}_0)]^{1/2}[EX_{i,k}^4]^{1/2}\\ =&o(1). \end{aligned} \end{aligned}$$
(A.3)

Similar to the proof of Theorem 1 in Li et al. (2015), replace \(\varvec{X}_i^T\varvec{b}_0\) by \(v\) and denote \(g_\tau (v)=g_\tau (v,\epsilon _i,\hat{Q}_{\tau ,\varvec{Z}})\), \(\zeta _n(v)=\frac{1}{\sqrt{n}}\sum _{i=1}^n\{g_\tau (v)-E[g_\tau (v)|\varvec{X}_i]\}X_{i,k}\), we have

$$\begin{aligned}&\sup _{|v_1-v|<\delta }|\zeta _n(v_1)-\zeta _n(v)|\\&\quad \le \sup _{|v_1-v|<\delta }\frac{1}{\sqrt{n}}\sum _{i=1}^n\bigg \{|\{g_\tau (v_1)-g_\tau (v)\}\varvec{X}_i|+E\big [|\{g_\tau (v_1)-g_\tau (v)\}\varvec{X}_i|\big |\varvec{X}_i\big ]\bigg \}\\&\quad =\frac{1}{\sqrt{n}}\sum _{i=1}^n\bigg \{|\{g_\tau (v_1^*)-g_\tau (v)\}\varvec{X}_i|+E\big [|\{g_\tau (v_1^*)-g_\tau (v)\}\varvec{X}_i|\big |\varvec{X}_i\big ]\bigg \}, \end{aligned}$$

in which \(v_1^*\) equals to \(v+\delta \) or \(v-\delta \). Then

$$\begin{aligned} \begin{aligned}&E\sup _{|v_1-v|<\delta }\big |\zeta _n(v_1)-\zeta _n(v)\big |\\&\quad \le 2\sqrt{n}E\big |\{g_\tau (v_1^*)-g_\tau (v)\}X_{i,k}\big |\\&\quad =2\sqrt{n}E\bigg |\int _{\hat{Q}_{\tau ,\varvec{Z}}+n^{-1/2}v}^{\hat{Q}_{\tau ,\varvec{Z}}+n^{-1/2}v_1^*}f_{\epsilon |\varvec{X}}(t)dtX_{i,k}\bigg |\\&\quad \le \delta \cdot 2E\big [\sup _{|t|<\pi }f_{\epsilon |\varvec{X}_i}(\hat{Q}_{\tau ,\varvec{Z}}+t)|X_{i,k}|\big ]. \end{aligned} \end{aligned}$$
(A.4)

When \(n\rightarrow \infty \), \(|n^{-1/2}v|<\pi \), \(|n^{-1/2}v_1^*|<\pi \). Combine (A.3) and (A.4) with assumptions, for any \(M>0\) and \(E\sup _{|v|\le M}|\zeta _n(v)|=o(1)\) we have

$$\begin{aligned} \begin{aligned}&\sqrt{n}\bigg \{\frac{1}{n}\sum _{i=1}^ng_\tau (\varvec{X}_i^T\varvec{b}_0,\epsilon _i,\hat{Q}_{\tau ,\varvec{Z}})X_{i,k}\bigg \}\\&\quad =\zeta _n+\sqrt{n}\bigg \{\frac{1}{n}\sum _{i=1}^nE[g_\tau (\varvec{X}_i^T\varvec{b}_0,\epsilon _i,\hat{Q}_{\tau ,\varvec{Z}})|\varvec{X}_i]X_{i,k}\bigg \}\\&\quad =\sqrt{n}\bigg \{\frac{1}{n}\sum _{i=1}^n\int _{-\frac{1}{\sqrt{n}}\varvec{X}_i^T\varvec{b}_0+\hat{Q}_{\tau ,\varvec{Z}}}^{\hat{Q}_{\tau ,\varvec{Z}}}f_{\epsilon |\varvec{X}_i}(t)dtX_{i,k}\bigg \}+o_p(1)\\&\quad =\frac{1}{n}\sum _{i=1}^nf_{\epsilon |\varvec{X}_i}(\xi ')\varvec{X}_i^T\varvec{b}_0X_{i,k}+o_p(1),~\xi '\in (-\frac{1}{\sqrt{n}}\varvec{X}_i^T\varvec{b}_0+\hat{Q}_{\tau ,\varvec{Z}},\hat{Q}_{\tau ,\varvec{Z}}). \end{aligned} \end{aligned}$$

With similar argument we have

$$\begin{aligned} \begin{aligned}&\sqrt{n}\bigg \{\frac{1}{n}\sum _{i=1}^ng_\tau (\varvec{X}_i^T\varvec{b}_0,\epsilon _i,\hat{Q}_{\tau ,\varvec{Z}})\bar{X}_{k}\bigg \}\\&\quad =\sqrt{n}\bigg \{\frac{1}{n}\sum _{i=1}^n\int _{-\frac{1}{\sqrt{n}}\varvec{X}_i^T\varvec{b}_0+\hat{Q}_{\tau ,\varvec{Z}}}^{\hat{Q}_{\tau ,\varvec{Z}}}f_{\epsilon |\varvec{X}_i}(t)dt\bar{X}_{k}\bigg \}+o_p(1)\\&\quad =\frac{1}{n}\sum _{i=1}^nf_{\epsilon |\varvec{X}_i}(\xi ')\varvec{X}_i^T\varvec{b}_0\bar{X}_{k}+o_p(1),~\xi '\in (-\frac{1}{\sqrt{n}}\varvec{X}_i^T\varvec{b}_0+\hat{Q}_{\tau ,\varvec{Z}},\hat{Q}_{\tau ,\varvec{Z}}). \end{aligned} \end{aligned}$$

Hence (A.1) can be written as

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^nf_{\epsilon |\varvec{X}_i}(\xi ')\varvec{X}_i^T\varvec{b}_0(X_{i,k}-\bar{X}_{k})+o_p(1),~\xi '\in (-\frac{1}{\sqrt{n}}\varvec{X}_i^T\varvec{b}_0+\hat{Q}_{\tau ,\varvec{Z}},\hat{Q}_{\tau ,\varvec{Z}}). \end{aligned}$$

Because \(\frac{1}{\sqrt{n}}\varvec{b}_0\rightarrow 0\) when \(n\rightarrow \infty \), we may take \(\xi '=\hat{Q}_{\tau ,\epsilon }\). Since \(\hat{Q}_{\tau ,\epsilon }{\mathop {\longrightarrow }\limits ^{p}}Q_{\tau ,\epsilon }\), we have \(\xi '{\mathop {\longrightarrow }\limits ^{p}}Q_{\tau ,\epsilon }\). Thus the first term can be written as

$$\begin{aligned} E[f_{\epsilon |\varvec{X}}(Q_{\tau ,\epsilon })\varvec{X}^T(X_{k}-EX_{k})]\varvec{b}_0+o_p(1). \end{aligned}$$
(A.5)

For the second term (A.2), it is same to the form in Li et al. (2015, Theorem 1). Combining their theorem with (A.5) yields that \(\sqrt{n}\widehat{\text {qcov}}_\tau \{Y,X_k\}\) can be written as

$$\begin{aligned} M_k(\varvec{0})+E[f_{\epsilon |\varvec{X}}(Q_{\tau ,\epsilon })\varvec{X}^T(X_k-EX_k)]\varvec{b}_0+o_p(1). \end{aligned}$$
(A.6)

Under assumptions of Theorem 1, we know that for any \(j\ne k\) a.s.

$$\begin{aligned}&\frac{M_j(\varvec{0})+E[f_{\epsilon |\varvec{X}}(Q_{\tau ,\epsilon })\varvec{X}^T(X_j-EX_j)]\varvec{b}_0)}{\sqrt{(\tau -\tau ^2)\hat{\sigma }_{X_j}^2}}\\&\qquad \ne \frac{M_k(\varvec{0})+E[f_{\epsilon |\varvec{X}}(Q_{\tau ,\epsilon })\varvec{X}^T(X_k-EX_k)]\varvec{b}_0}{\sqrt{(\tau -\tau ^2)\hat{\sigma }_{X_k}^2}}, \end{aligned}$$

so \(K\) is unique a.s.. Let \(\hat{\varvec{q}}=(\widehat{\text {qcov}}_\tau \{Y,X_1\},\ldots ,\widehat{\text {qcov}}_\tau \{Y,X_p\})^T\) and \(\hat{\varvec{R}}=(\widehat{\text {qcor}}_\tau \{Y,X_1\},\ldots ,\widehat{\text {qcor}}_\tau \{Y,X_p\})^T\), then we have if \(\varvec{\beta }_0=\varvec{0}\),

$$\begin{aligned} \sqrt{n}\hat{\varvec{R}}{\mathop {\longrightarrow }\limits ^{d}}&\bigg (\frac{M_1(\varvec{0})+E[f_{\epsilon |\varvec{X}}(Q_{\tau ,\epsilon })\varvec{X}^T(X_1-EX_1)]\varvec{b}_0}{\sqrt{(\tau -\tau ^2)\hat{\sigma }_{X_1}^2}},\\&\ldots ,\frac{M_p(\varvec{0})+E[f_{\epsilon |\varvec{X}}(Q_{\tau ,\epsilon })\varvec{X}^T(X_p-EX_p)]\varvec{b}_0}{\sqrt{(\tau -\tau ^2)\hat{\sigma }_{X_p}^2}}\bigg )^T. \end{aligned}$$

Similar to McKeague and Qian (2015, Theorem 1), let

$$\begin{aligned} h(\varvec{t})=(\varvec{1}_{\arg \max _kt_k=1},\ldots ,\varvec{1}_{\arg \max _kt_k=p})^T, \end{aligned}$$

where \(\varvec{t}=(t_1,\ldots ,t_p)^T\in \mathbb {R}^p\). Notice that if \(\arg \max _kt_k\) is unique, \(h\) is continuous at \(\varvec{t}\) and

$$\begin{aligned} \sqrt{n}\widehat{\text {qcov}}=\sqrt{n}\hat{\varvec{q}}^Th(\sqrt{n}\hat{\varvec{R}}). \end{aligned}$$

Hence

$$\begin{aligned} K=\arg \max _{k=1,\ldots ,p}\frac{M_k(\varvec{0})+E[f_{\epsilon |\varvec{X}}(Q_{\tau ,\epsilon })\varvec{X}^T(X_k-EX_k)]\varvec{b}_0}{\sqrt{(\tau -\tau ^2)\hat{\sigma }_{X_k}^2}}. \end{aligned}$$
(A.7)

Combining (A.6) with (A.7) and by the continuous mapping theorem we have if \(\varvec{\beta }_0=\varvec{0}\),

$$\begin{aligned} \begin{aligned}&\sqrt{n}\widehat{\text {qcov}}_\tau {\mathop {\longrightarrow }\limits ^{d}}\\&M_K(\varvec{0})+\{E[f_{\epsilon |\varvec{X}}(Q_{\tau ,\epsilon })\varvec{X}^T(X_K-EX_K)]-E[f_{\epsilon |\varvec{X}}(Q_{\tau ,\epsilon })\varvec{X}^TX_{\bar{k}(\varvec{b}_0)}]\}\varvec{b}_0. \end{aligned} \end{aligned}$$
(A.8)

Because \(\frac{1}{\sqrt{n}}\varvec{b}_0\rightarrow \varvec{0}\) when \(n\rightarrow \infty \), we have \(\hat{Q}_{\tau ,\varvec{X}^T(\varvec{\beta }_0+\frac{1}{\sqrt{n}}\varvec{b}_0)+\epsilon }\rightarrow \hat{Q}_{\tau ,\varvec{X}^T\varvec{\beta }_0+\epsilon },Q_{\tau ,\varvec{X}^T(\varvec{\beta }_0+\frac{1}{\sqrt{n}}\varvec{b}_0)+\epsilon }\rightarrow Q_{\tau ,\varvec{X}^T\varvec{\beta }_0+\epsilon }\). Notice the fact that \(E\psi _\tau (\epsilon -Q_{\tau ,\epsilon })(X_{\bar{k}(\varvec{b}_0)}-EX_{\bar{k}(\varvec{b}_0)})=0\), then \(-\sqrt{n}\text {qcov}_\tau \) can be written as

$$\begin{aligned} \begin{aligned}&\sqrt{n}\bigg \{-\big \{E\big [\psi _\tau (\varvec{X}^T(\varvec{\beta }_0+\frac{1}{\sqrt{n}}\varvec{b}_0)+\epsilon -Q_{\tau ,\varvec{X}^T(\varvec{\beta }_0+\frac{1}{\sqrt{n}}\varvec{b}_0)+\epsilon })(X_{\bar{k}(\varvec{b}_0)}-EX_{\bar{k}(\varvec{b}_0)})\big ]\\&-E\big [\psi _\tau (\epsilon -Q_{\tau ,Z})(X_{\bar{k}(\varvec{b}_0)}-EX_{\bar{k}(\varvec{b}_0)})\big ]\big \}\bigg \}+o_p(1). \end{aligned} \end{aligned}$$
(A.9)

If \(\varvec{\beta }_0=\varvec{0}\), the term (A.9) can be expressed by

$$\begin{aligned}&-\sqrt{n}\bigg \{E\big [\psi _\tau (\frac{1}{\sqrt{n}}\varvec{X}^T\varvec{b}_0+\epsilon -Q_{\tau ,\varvec{Z}})(X_{\bar{k}(\varvec{b}_0)}-EX_{\bar{k}(\varvec{b}_0)})\big ]\\&-E\big [\psi _\tau (\epsilon -Q_{\tau ,\varvec{Z}})(X_{\bar{k}(\varvec{b}_0)}-EX_{\bar{k}(\varvec{b}_0)})\big ]\bigg \}+o_p(1)\\ =&-\sqrt{n}E\bigg \{E\big [\psi _\tau (\frac{1}{\sqrt{n}}\varvec{X}^T\varvec{b}_0+\epsilon -Q_{\tau ,\varvec{Z}})(X_{\bar{k}(\varvec{b}_0)}-EX_{\bar{k}(\varvec{b}_0)})\big |\varvec{X}\big ]\\&-E\big [\psi _\tau (\epsilon -Q_{\tau ,\varvec{Z}})(X_{\bar{k}(\varvec{b}_0)}-EX_{\bar{k}(\varvec{b}_0)})\big |\varvec{X}\big ]\bigg \}+o_p(1)\\ =&-\sqrt{n}E\bigg \{E\big [\psi _\tau (\frac{1}{\sqrt{n}}\varvec{X}^T\varvec{b}_0+\epsilon -Q_{\tau ,\varvec{Z}})-\psi _\tau (\epsilon -Q_{\tau ,\varvec{Z}})\big |\varvec{X}\big ](X_{\bar{k}(\varvec{b}_0)}-EX_{\bar{k}(\varvec{b}_0)})\bigg \}\\&+o_p(1), \end{aligned}$$

where

$$\begin{aligned}&E\big [\psi _\tau (\frac{1}{\sqrt{n}}\varvec{X}^T\varvec{b}_0+\epsilon -Q_{\tau ,\varvec{Z}})-\psi _\tau (\epsilon -Q_{\tau ,\varvec{Z}})\big |\varvec{X}\big ]\\&\quad =E\big [-[I(\epsilon -Q_{\tau ,\varvec{Z}}<-\frac{1}{\sqrt{n}}\varvec{X}^T\varvec{b}_0)-I(\epsilon -Q_{\tau ,\varvec{Z}}<0)]\big |\varvec{X}\big ]\\&\quad =E\big [[I(-\frac{1}{\sqrt{n}}\varvec{X}^T\varvec{b}_0<\epsilon -Q_{\tau ,\varvec{Z}}<0)-I(-\frac{1}{\sqrt{n}}\varvec{X}^T\varvec{b}_0>\epsilon -Q_{\tau ,\varvec{Z}}>0)]\big |\varvec{X}\big ]\\&\quad =\int _{-\frac{1}{\sqrt{n}}\varvec{X}^T\varvec{b}_0+Q_{\tau ,\varvec{Z}}}^{Q_{\tau ,\varvec{Z}}}f_{\epsilon |\varvec{X}}(t)dt\\&\quad =f_{\epsilon |\varvec{X}}(\xi )\cdot \frac{1}{\sqrt{n}}\varvec{X}^T\varvec{b}_0,~\xi \in (-\frac{1}{\sqrt{n}}\varvec{X}^T\varvec{b}_0+Q_{\tau ,\varvec{Z}},Q_{\tau ,\varvec{Z}}). \end{aligned}$$

The last equation is obtained by the assumptions and mean value theorem for definite integrals. Hence (A.9) can be written as \(-E[f_{\epsilon |\varvec{X}}(\xi )\varvec{X}^T(X_{\bar{k}(\varvec{b}_0)}-EX_{\bar{k}(\varvec{b}_0)})]\varvec{b}_0+o_p(1),\xi \in (-\frac{1}{\sqrt{n}}\varvec{X}^T\varvec{b}_0+Q_{\tau ,\varvec{Z}},Q_{\tau ,\varvec{Z}})\). Since \(\frac{1}{\sqrt{n}}\varvec{b}_0\rightarrow \varvec{0}\) as \(n\rightarrow \infty \), we may take \(\xi =Q_{\tau ,\epsilon }\). Then \(-\sqrt{n}\text {qcov}_\tau \) can be written as

$$\begin{aligned} -E[f_{\epsilon |\varvec{X}}(Q_{\tau ,\epsilon })\varvec{X}^T(X_{\bar{k}(\varvec{b}_0)}-EX_{\bar{k}(\varvec{b}_0)})]\varvec{b}_0+o_p(1). \end{aligned}$$
(A.10)

Aggregating (A.8), (A.10) and Slutsky’s lemma we finish the proof of Lemma 1.

Proof of Lemma 2

If \(\varvec{\beta }_0\ne \varvec{0}\),

$$\begin{aligned}&\bigg |\frac{1}{n}\sum _{i=1}^n[\psi _\tau (Y_i-\hat{Q}_{\tau ,Y})(X_{i,\hat{k}_n}-\bar{X}_{\hat{k}_n})-\text {qcov}_\tau ]^2\\&\quad \quad -\frac{1}{n}\sum _{i=1}^n[\psi _\tau (Y_i-Q_{\tau ,Y})(X_{i,\hat{k}_n}-EX_{\hat{k}_n})-\text {qcov}_\tau ]^2\bigg |\\&\quad \le O_p(1)\frac{1}{n}\sum _{i=1}^n\bigg |\psi _\tau (Y_i-\hat{Q}_{\tau ,Y})(X_{i,\hat{k}_n}-\bar{X}_{\hat{k}_n})-\psi _\tau (Y_i-Q_{\tau ,Y})(X_{i,\hat{k}_n}-EX_{\hat{k}_n})\bigg |\\&\quad \le O_p(1) \frac{1}{n}\sum _{i=1}^n\bigg |EX_{\hat{k}_n}-\bar{X}_{\hat{k}_n}\bigg |\\&\quad =o_p(1). \end{aligned}$$

Because \(\hat{k}_n{\mathop {\longrightarrow }\limits ^{p}} k_0\), from the definition of convergence in probability we know that for all \(\epsilon _0>0\), there exists some integer \(N_1\) such that when \(n\ge N_1\), we have

$$\begin{aligned} P(|\hat{k}_n-k_0|>\frac{1}{2})<\epsilon _0. \end{aligned}$$

Since \(\hat{k}_n\) takes integer value, we have

$$\begin{aligned} \{|\hat{k}_n-k_0|>\frac{1}{2}\}=\{\hat{k}_n\ne k_0\}. \end{aligned}$$

Besides, from the uniform law of large numbers (ULLN) we have

$$\begin{aligned}&\frac{1}{n}\sum _{i=1}^n[\psi _\tau (Y_i-Q_{\tau ,Y})(X_{i,k_0}-EX_{k_0})-\text {qcov}_\tau ]^2\\&\qquad {\mathop {\longrightarrow }\limits ^{p}}E[\psi _\tau (Y-Q_{\tau ,Y})(X_{k_0}-EX_{k_0})]^2=\sigma _1^2, \end{aligned}$$

which means that there exists some integer \(N_2\) such that when \(n\ge N_2\), we have

$$\begin{aligned} P\left( |\frac{1}{n}\sum _{i=1}^n[\psi _\tau (Y_i-Q_{\tau ,Y})(X_{i,k_0}-EX_{k_0})-\text {qcov}_\tau ]^2-\sigma _1^2|>\delta \right) <\epsilon _0, \end{aligned}$$

where \(\delta >0\) is arbitrary.

Hence

$$\begin{aligned}&P\left( |\frac{1}{n}\sum _{i=1}^n[\psi _\tau (Y_i-Q_{\tau ,Y})(X_{i,\hat{k}_n}-EX_{\hat{k}_n})-\text {qcov}_\tau ]^2-\sigma _1^2|>\delta \right) \\&\quad =P\left( |\frac{1}{n}\sum _{i=1}^n \left[ \psi _\tau (Y_i-Q_{\tau ,Y})(X_{i,\hat{k}_n}-EX_{\hat{k}_n})-\text {qcov}_\tau \right] ^2\right. \\&\qquad \quad \left. -\sigma _1^2|>\delta ,|\hat{k}_n-k_0|>\frac{1}{2}\right) \\&\qquad +P\left( \!|\frac{1}{n}\!\sum _{i=1}^n[\psi _\tau (Y_i-Q_{\tau ,Y})(X_{i,\hat{k}_n}-EX_{\hat{k}_n})\!-\!\text {qcov}_\tau ]^2-\sigma _1^2|>\delta ,|\hat{k}_n-k_0|\!\le \!\frac{1}{2}\!\right) \\&\quad \le P\left( |\hat{k}_n-k_0|>\frac{1}{2}\right) \\&\quad \quad +P\left( |\frac{1}{n}\sum _{i=1}^n \left[ \psi _\tau (Y_i-Q_{\tau ,Y})(X_{i,\hat{k}_n}-EX_{\hat{k}_n})-\text {qcov}_\tau \right] ^2-\sigma _1^2|>\delta ,\hat{k}_n=k_0\right) \\&\quad = P\left( |\hat{k}_n-k_0|>\frac{1}{2}\right) \\&\quad \quad +P\left( |\frac{1}{n}\sum _{i=1}^n \left[ \psi _\tau (Y_i-Q_{\tau ,Y})(X_{i,k_0}-EX_{k_0})-\text {qcov}_\tau \right] ^2-\sigma _1^2|>\delta \right) . \end{aligned}$$

Take \(N=\max \{N_1,N_2\}\), we have when \(n>N\),

$$\begin{aligned} P\big (|\frac{1}{n}\sum _{i=1}^n[\psi _\tau (Y_i-Q_{\tau ,Y})(X_{i,\hat{k}_n}-EX_{\hat{k}_n})-\text {qcov}_\tau ]^2-\sigma _1^2|>\delta \big )<2\epsilon _0 \end{aligned}$$

for any \(\delta >0\) and \(\epsilon _0>0\), which means

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^n[\psi _\tau (Y_i-Q_{\tau ,Y})(X_{i,\hat{k}_n}-EX_{\hat{k}_n})-\text {qcov}_\tau ]^2{\mathop {\longrightarrow }\limits ^{p}}\sigma _1^2. \end{aligned}$$

If \(\varvec{\beta }_0=\varvec{0}\), with similar argument we have

$$\begin{aligned}&\frac{1}{n}\sum _{i=1}^n[\psi _\tau (Y_i-Q_{\tau ,Y})(X_{i,\hat{k}_n}-EX_{\hat{k}_n})-\text {qcov}_\tau ]^2\\&\qquad {\mathop {\longrightarrow }\limits ^{p}}E[\psi _\tau (Y-Q_{\tau ,Y})(X_{\bar{k}(\varvec{b}_0)}-EX_{\bar{k}(\varvec{b}_0)})]^2=\sigma _2^2. \end{aligned}$$

Combining all above yields Lemma 2.

Proof of Theorem 1

Let \(W_n=\max \limits _{1\le i\le n}\big |\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau \big |\). It is obvious that \(W_n=O(1)\) a.s..

Let \(S_n=\frac{1}{n}\sum _{i=1}^n(\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau )^2\). From equation (2.4) we have

$$\begin{aligned} 0=|f(\lambda )|&=\frac{1}{n}\bigg |\sum _{i=1}^n(\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau )-\lambda \sum _{i=1}^n\frac{(\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau )^2}{1+\lambda (\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau )}\bigg |\\&\ge \frac{|\lambda |}{n}\sum _{i=1}^n\frac{(\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau )^2}{1+\lambda (\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau )}-\frac{1}{n}\left| \sum _{i=1}^n(\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau )\right| \\&\ge \frac{|\lambda |S_n}{1+|\lambda |W_n}-\left| \frac{1}{n}\sum _{i=1}^{n}\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau \right| . \end{aligned}$$

From Lemma 1 we obtain \(\frac{|\lambda |S_n}{1+|\lambda |W_n}=O_p(n^{-1/2})\), which yields \(|\lambda |=O_p(n^{-1/2})\).

Let \(\gamma _i=\lambda (\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau )\), we have \(\max \limits _{1\le i\le n}|\gamma _i|=O_p(n^{-1/2})O(1)=O_p(n^{-1/2})\). Then equation (2.4) can be written as:

$$\begin{aligned} 0=f(\lambda )&=\frac{1}{n}\sum _{i=1}^n\left[ \left( \hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau )(1-\gamma _i+\frac{\gamma _i^2}{1+\gamma _i}\right) \right] \\&=\frac{1}{n}\sum _{i=1}^n\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau -S_n\lambda +\frac{1}{n}\sum _{i=1}^n(\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau )\frac{\gamma _i^2}{1+\gamma _i}. \end{aligned}$$

From discussed above the last term \(\frac{1}{n}\sum _{i=1}^n(\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau )\frac{\gamma _i^2}{1+\gamma _i}=O_p(n^{-3/2})\), so we obtain

$$\begin{aligned} \lambda =S_n^{-1}\left( \frac{1}{n}\sum _{i=1}^n\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau )+\beta ,~\beta =O_p(n^{-1}\right) . \end{aligned}$$

Hence from Taylor’s expansion we have

$$\begin{aligned} l(\text {qcov}_\tau )=2\sum _{i=1}^n\gamma _i-\sum _{i=1}^n\gamma _i^2+2\eta _n, \end{aligned}$$

where

$$\begin{aligned} |\eta _n|\le C\sum _{i=1}^n|\lambda (\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau )|^3\le C|\lambda |^3n=O_p(n^{-1/2}). \end{aligned}$$

Plugging \(\lambda \) we obtain

$$\begin{aligned} l(\text {qcov}_\tau )&=2n\lambda (\frac{1}{n}\sum _{i=1}^n(\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau ))-nS_n\lambda ^2+2\eta _n\\&=\frac{n(\frac{1}{n}\sum _{i=1}^n\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau )^2}{S_n}-nS_n\beta ^2\\&\qquad +2\eta _n-2S_n^{-1}\left( \frac{1}{n}\sum _{i=1}^n\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau \right) \beta n. \end{aligned}$$

So if \(\varvec{\beta }_0\ne \varvec{0}\),

$$\begin{aligned} l(\text {qcov}_\tau )=\frac{n(\frac{1}{n}\sum _{i=1}^n\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau )^2}{\Omega _{k_0}(\varvec{\beta }_0)}\frac{\Omega _{k_0}(\varvec{\beta }_0)}{S_n}+o_p(1){\mathop {\longrightarrow }\limits ^{p}}\frac{\Omega _{k_0}(\varvec{\beta }_0)}{\sigma _1^2}\chi _1^2. \end{aligned}$$

The last step could be deduced from Lemma 1 and Lemma 2 directly.

Similarly, if \(\varvec{\beta }_0=\varvec{0}\), we have

$$\begin{aligned} l(\text {qcov}_\tau )=\frac{n(\frac{1}{n}\sum _{i=1}^n\hat{V}_{i,\hat{k}_n}-\text {qcov}_\tau )^2}{\Omega _{K}(\varvec{0})}\frac{\Omega _{K}(\varvec{0})}{S_n}+o_p(1){\mathop {\longrightarrow }\limits ^{p}}\frac{\Omega _{K}(\varvec{0})}{\sigma _2^2}\chi _1^2(\delta ). \end{aligned}$$

The proof is completed.

Proof of Theorem 2

Proof of Theorem 2 is similar to that of Theorem 1, and hence we omit it here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Wang, H., Yan, G. et al. Empirical likelihood based tests for detecting the presence of significant predictors in marginal quantile regression. Metrika 86, 149–179 (2023). https://doi.org/10.1007/s00184-022-00866-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-022-00866-1

Keywords

Navigation