Skip to main content
Log in

Kerr Microscopy Study of Magnetic Phase Transition in Fe49Rh51

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Magnetic phase transition in Fe49Rh51 was studied using wide-field Kerr microscopy. In zero magnetic field, temperature dependences of rotation of polarization plane on the sample surface are obtained. The analysis of the obtained data shows that the temperature of the AFM–FM phase transition is TN, heat = 323.5 K, and that of the reverse FM–AFM phase transition is TN, cool = 317 K. In a magnetic field of 0.5 T, the temperature hysteresis shifts to lower temperatures by 4 K. For the first time ever, the magnetic polar domains with a disordered labyrinthine shape are found on the sample surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. Sander, S. O. Valenzuela, D. Makarov, C. H. Marrows, E. E. Fullerton, P. Fischer, J. McCord, P. Vavassori, S. Mangin, and P. Pirro, “The 2017 magnetism roadmap,” J. Phys. D: Appl. Phys. 50, 363001 (2017).

    Article  Google Scholar 

  2. A. Zakharov, “Crystal lattice parameter and structural distortions in Fe-Rh alloy at phase transitions,” Fiz. Met. Metalloved. 24, 84–90 (1967).

    CAS  Google Scholar 

  3. S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, “The magnetocaloric effect in Fe49Rh51 compound,” Phys. Lett. A 148, 363–366 (1990).

    Article  CAS  Google Scholar 

  4. A. M. Aliev, A. B. Batdalov, L. N. Khanov, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, R. M. Grechishkin, A. R. Kaul, and V. Sampath, “Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe48Rh52 and Sm0.6Sr0.4MnO3,” Appl. Phys. Lett. 109, 202407 (2016).

    Article  Google Scholar 

  5. E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J.‑L. Tamarit, S. Pramanick, S. Majumdar, C. Frontera, and L. Mañosa, “Barocaloric and magnetocaloric effects in Fe49Rh51,” Phys. Rev. B 89, 214105 (2014).

    Article  Google Scholar 

  6. S. Nikitin, G. Myalikgulyev, M. Annaorazov, A. L. Tyurin, R. W. Myndyev, and S. A. Akopyan, “Giant elastocaloric effect in FeRh alloy,” Phys. Lett. A 171, 234–236 (1992).

    Article  CAS  Google Scholar 

  7. S. Foner, “Vibrating sample magnetometer,” Rev. Sci. Instrum. 27 (7), 548 (1956).

    Article  Google Scholar 

  8. G. W. H. Hohne, W. F. Hemminger, and H. J. Flammersheim, Differential Scanning Calorimetry, 2nd ed. (Springer, Berlin, 2003).

    Book  Google Scholar 

  9. A. Chirkova, F. Bittner, K. Nenkov, N. V. Baranov, L. Schultz, K. Nielsch, and T. G. Woodcock, “The effect of the microstructure on the antiferromagnetic to ferromagnetic transition in FeRh alloys,” Acta Mater. 131, 31–38 (2017).

    Article  CAS  Google Scholar 

  10. A. S. Komlev, D. Y. Karpenkov, D. A. Kiselev, T. S. Ilina, A. Chirkova, R. R. Gimaev, T. Usami, T. Taniyama, V. I. Zverev, and N. S. Perov, “Ferromagnetic phase nucleation and its growth evolution in FeRh thin films,” J. Alloys Compd. 874, 159924 (2021).

    Article  CAS  Google Scholar 

  11. V. I. Zverev, R. R. Gimaev, T. Miyanaga, A. A. Vaulin, A. F. Gubkin, B. B. Kovalev, A. M. dos Santos, E. Lovell, L. F. Cohen, and N. A. Zarkevich, “Peculiarities of the phase transformation dynamics in bulk FeRh based alloys from magnetic and structural measurements,” J. Magn. Magn. Mater. 522, 167560 (2021).

    Article  CAS  Google Scholar 

  12. E. Mancini, F. Pressacco, M. Haertinger, E. E. Fullerton, T. Suzuki, G. Woltersdorf, and C. H. Back, “Magnetic phase transition in iron–rhodium thin films probed by ferromagnetic resonance,” J. Phys. D: Appl. Phys. 46, 245302 (2013).

    Article  Google Scholar 

  13. A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures (Springer, Berlin, 1998).

    Google Scholar 

  14. I. V. Soldatov and R. Schäfer, “Selective sensitivity in Kerr microscopy,” Rev. Sci. Instrum. 88, 073701 (2017).

    Article  CAS  Google Scholar 

  15. A. A. Amirov, F. Cugini, A. P. Kamantsev, T. Gottschall, M. Solzi, A. M. Aliev, Yu. I. Spichkin, V. V. Koledov, and V. G. Shavrov, “Direct measurements of the magnetocaloric effect of Fe49Rh51 using the mirage effect,” J. Appl. Phys. 127, 233905 (2020).

    Article  CAS  Google Scholar 

  16. F. Schmidt, W. Rave, and A. Hubert, “Enhancement of magneto-optical domain observation by digital image processing,” IEEE Trans. Magn. 21 (5), 1596–1598 (1985).

    Article  Google Scholar 

Download references

Funding

The work is supported by the mutual program of the Ministry of Science and Higher Education of the Russian Federation and German Exchange Academic Service DAAD “Michael Lomonosov/Immanuel Kant” (Project no. 2295-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Taaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Golovnya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taaev, T.A., Amirov, A.A., Aliev, A.M. et al. Kerr Microscopy Study of Magnetic Phase Transition in Fe49Rh51. Phys. Metals Metallogr. 123, 402–406 (2022). https://doi.org/10.1134/S0031918X22040123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22040123

Keywords:

Navigation