Skip to main content
Log in

Magnetocaloric Effect in Metals and Alloys

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This paper presents a brief review of works on new cooling technologies, in particular, on the most promising of them: magnetic cooling technology based on the magnetocaloric effect (MCE). The results of the work of the leading Russia’s groups performing experimental and theoretical studies of the magnetocaloric, magnetic, thermophysical, and transport properties of various materials with MCE are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. M. Isaac and D. P. van Vuuren, “Modeling global residential sector energy demand for heating and air conditioning in the context of climate change,” Energy Policy 37, 507–521 (2009).

    Article  Google Scholar 

  2. O. Gutfleisch, M. A. Willard, E. Brück, C. H. Chen, S. Sankar, and J. P. Liu, “Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient,” Adv. Mater. 23, 821–842 (2011).

    Article  CAS  Google Scholar 

  3. A. Kitanovski, “Applications of magnetocaloric materials,” in Encyclopedia of Smart Materials, Vol. 5: Magnetic Materials and Smart Materials for Specific Applications (Elsevier, Amsterdam, 2022), p. 418.

  4. V. V. Khovaylo and S. V. Taskaev, “Magnetic refrigeration: from theory to applications,” in Encyclopedia of Smart Materials (Elsevier, Oxford, 2022), pp. 407–417.

    Google Scholar 

  5. A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (CRC Press, Boca Raton, FL, 2003).

    Book  Google Scholar 

  6. K. A. Gschneidner Jr., V. K. Pecharsky, and A. O. Tsokol, “Recent developments in magnetocaloric materials,” Rep. Prog. Phys. 68 (6), 1479–1539 (2005).

    Article  CAS  Google Scholar 

  7. G. V. Brown, “Magnetic heat pumping near room temperature,” J. Appl. Phys. 47, 3673–3680 (1976).

    Article  CAS  Google Scholar 

  8. V. K. Pecharsky and K. A. Gschneidner Jr., “Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from 20 to 290 K,” Appl. Phys. Lett. 70 (24), 3299–3301 (1997).

    Article  CAS  Google Scholar 

  9. B. F. Yu, Q. Gao, B. Zhang, X. Z. Meng, and Z. Chen, “Review on research of room temperature magnetic refrigeration,” Int. J. Refrig. 26 (6), 622–636 (2003).

    Article  Google Scholar 

  10. J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, and O. Gutfleisch, “Giant magnetocaloric effect driven by structural transitions,” Nat. Mater. 11 (7), 620–626 (2012).

    Article  CAS  Google Scholar 

  11. A. Kitanovski, “Energy applications of magnetocaloric materials,” Adv. Energy Mater. 10, 1903741 (2020).

    Article  CAS  Google Scholar 

  12. K. A. Gschneidner Jr. and V. K. Pecharsky, “Thirty years of near room temperature magnetic cooling: Where we are today and future prospects,” Int. J. Refrig. 31 (6), 945–961 (2008).

    Article  Google Scholar 

  13. K. G. Sandeman, “Magnetocaloric materials: the search for new systems,” Scr. Mater. 67 (6), 566–571 (2012).

    Article  CAS  Google Scholar 

  14. O. Gutfleisch, T. Gottschall, M. Fries, D. Benke, I. Radulov, K. P. Skokov, H. Wende, M. Gruner, M. Acet, P. Entel, and M. Farle, “Mastering hysteresis in magnetocaloric materials,” Philos. Trans. R. Soc., A 374 (2074), 20150308 (2016).

  15. J. Lyubina, “Magnetocaloric materials for energy efficient cooling,” J. Phys. D: Appl. Phys. 50 (5), 053002 (2017).

    Article  Google Scholar 

  16. V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, “Magnetocaloric effect: from materials research to refrigeration devices,” Prog. Mater. Sci. 93, 112–232 (2018).

    Article  Google Scholar 

  17. F. Scheibel, T. Gottschall, A. Taubel, M. Fries, K. P. Skokov, A. Terwey, W. Keune, K. Ollefs, H. Wende, M. Farle, M. Acet, O. Gutfleisch, and M. E. Gruner, “Hysteresis design of magnetocaloric materials—From basic mechanisms to applications,” Energy Technol. 6 (8), 1397–1428 (2018).

    Article  CAS  Google Scholar 

  18. V. V. Sokolovskiy, O. N. Miroshkina, and V. D. Buchelnikov, Fiz. Met. Metalloved. (in press).

  19. N. Z. Abdulkadirova, A. G. Gamzatov, A. M. Aliev, and P. Gebara, Fiz. Met. Metalloved. (in press).

  20. A. S. Kuznetsov, A. V. Mashirov, A. M. Aliev, A. O. Petrov, M. S. Anikin, I. I. Musabirov, A. A. Amirov, I. A. Kon, V. V. Koledov, A. P. Kryukov, and V. G. Shavrov, Fiz. Met. Metalloved. (in press).

  21. V. I. Mityuk, G. S. Rimskii, V. I. Val’kov, A. V. Golovchan, A. V. Mashirov, V. V. Koledov, and S. V. Taskaev, Fiz. Met. Metalloved. (in press).

  22. T. A. Taaev, A. A. Amirov, A. M. Aliev, A. Chirkova, I. V. Soldatov, and R. Sheffer, Fiz. Met. Metalloved. (in press).

  23. M. S. Anikin, E. N. Tarasov, M. V. Ragozina, E. V. Potapov, and A. V. Zinin, Fiz. Met. Metalloved. (in press).

  24. A. G. Gamzatov, A. M. Aliev, and Sh. K. Khizriev, Fiz. Met. Metalloved. (in press).

  25. O. O. Pavlukhina, V. V. Sokolovskiy, V. D. Buchelnikov, and M. A. Zagrebin, Fiz. Met. Metalloved. (in press).

  26. K. R. Erager, D. R. Baigutlin, V. V. Sokolovskiy, and V. D. Buchelnikov, Fiz. Met. Metalloved. (in press).

  27. A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, L. N. Butvin, A. V. Golovchan, V. I. Val’kov, B. M. Todris, and S. V. Taskaev, Fiz. Met. Metalloved. (in press).

  28. A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, N. H. Yen, P. T. Thanh, V. M. Quang, N. H. Dan, A. S. Los, A. Gilewski, I. S. Tereshina, and L. N. Butvina, “Measurement of magnetocaloric effect in pulsed magnetic fields with the help of infrared fiber optical temperature sensor,” J. Magn. Magn. Mater. 440, 70–73 (2017).

    Article  CAS  Google Scholar 

  29. A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, L. N. Butvina, A. V. Golovchan, A. P. Sivachenko, B. M. Todris, V. I. Valkov, A. V. Koshelev, and G. A. Shandryuk, “Magnetocaloric effect and magnetization of a composite material based on MnAs in pulsed magnetic fields up to 40 kOe,” Chelyab. Fiz.-Mat. Zh. 5, 537–544 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Marchenkov.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolovskiy, V.V., Miroshkina, O.N., Buchelnikov, V.D. et al. Magnetocaloric Effect in Metals and Alloys. Phys. Metals Metallogr. 123, 315–318 (2022). https://doi.org/10.1134/S0031918X2204010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X2204010X

Keywords:

Navigation