Skip to main content
Log in

Study of Heat Transfer Processes in a System Containing Fe–Rh Microwires

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

To date, the choice of the geometry of a magnetic cooling cell is a relevant problem in the field of magnetic refrigeration. In this study, the heat transfer processes in three-dimensional magnetic cooling cells containing Fe–Rh microwires are studied within the theoretical simulation approaches. The velocities of heat carrier flow velocities of 2.5 and 0.7 m/s are considered. It is found that the relaxation times are 0.8 and 1.4 ms for a flow velocity of 2.5 m/s, and 1.8 and 3.3 ms for a flow velocity of 0.7 m/s in the case of using microwire diameters of 10 and 50 µm, respectively. It is shown that the use of Fe–Rh microwires in magnetic cooling cells can be promising for magnetic refrigeration technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Kitanovski and W. E. Peter, “Thermodynamics of magnetic refrigeration,” Int. J. Refrig. 29, 3–21 (2006).

    Article  CAS  Google Scholar 

  2. V. K. Pecharsky, K. A. Gschneidner, and A. O. Tsokol, “Recent developments in magnetocaloric materials,” Rep. Prog. Phys. 68, 1479–1539 (2005).

    Article  Google Scholar 

  3. A. Chirkova, K. P. Skokov, L. Schultz, and N. V. Baranov, “Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions,” Acta Mater. 106, 15–21 (2016).

    Article  CAS  Google Scholar 

  4. S. A. Nikitin, G. Myalikgulyev, A. M. Tishin, M. P. Annaorazov, K. A. Asatryan, and A. L. Tyurin, “The magnetocaloric effect in Fe49Rh51 compound,” Phys. Lett. A 148 (6), 363–366 (1990).

    Article  CAS  Google Scholar 

  5. V. V. Khovaylo, V. V. Rodionova, S. N. Shevyrtalov, and V. Novosad, “Magnetocaloric effect in “reduced” dimensions: thin films, ribbons, and microwires of Heusler alloys and related compounds,” Phys. Status Solidi B 251 (10), 2104–2113 (2014).

    Article  CAS  Google Scholar 

  6. V. Zhukova, M. Ipatov, A. Granovsky, and A. Zhukov, “Magnetic properties of Ni–Mn–In–Co Heusler-type glass-coated microwires,” J. Appl. Phys. 115, 17A939 (2014).

  7. A. Sarlah, J. Tusek, and A. Poredos, “Comparison of thermo-hydraulic properties of heat regenerators applicable to active magnetic refrigerators,” J. Mech. Eng. 58, 16–22 (2012).

    Article  Google Scholar 

  8. K. K. Nielsen, C. R. H. Bahl, A. Smith, R. Bjork, N. Pryds, and J. Hattel, “Detailed numerical modeling of a linear parallel-plate active magnetic regenerator,” Int. J. Refrig. 32 (6), 1478–1486 (2009).

    Article  CAS  Google Scholar 

  9. K. Engelbrecht, J. Tusek, K. K. Nielsen, A. Kitanovski, C. R. H. Bahl, and A. Poredos, “Improved modeling of a parallel plate active magnetic regenerator,” J. Phys. D: Appl. Phys. 46 (25), 255002 (2013).

    Article  Google Scholar 

  10. S. Taskaev, V. Khovaylo, D. Karpenkov, I. Radulov, M. Ulyanov, D. Bataev, A. Dyakonov, D. Gunderov, K. Skokov, and O. Gutfleisch, “Plastically deformed Gd–X (X = Y, In, Zr, Ga, B) solid solutions for magnetocaloric regenerator of parallel plate geometry,” J. Alloys Compd. 754, 207–214 (2018).

    Article  CAS  Google Scholar 

  11. K. K. Nielsen, J. Tusek, K. Engelbrecht, S. Schopfer, A. Kitanovski, C. R. H. Bahl, A. Smith, N. Pryds, and A. Poredos, “Review on numerical modeling of active magnetic regenerators for room temperature applications,” Int. J. Refrig. 34 (3), 603–616 (2011).

    Article  Google Scholar 

  12. M. Vazquez, H. Chiriac, A. Zhukov, L. Panina, and T. Uchiyama, “On the state-of-the-art in magnetic microwires and expected trends for scientific and technological studies,” Phys. Status Solidi A 208 (3), 493–501 (2011).

    Article  CAS  Google Scholar 

  13. M. I. Ilyn, V. Zhukova, J. D. Santos, M. L. Sanchez, V. M. Prida, B. Hernando, V. Larin, J. Gonzalez, A. M. Tishin, and A. Zhukov, “Magnetocaloric effect in nanogranular glass coated microwires,” Phys. Status Solidi A 205 (6), 1378–1381 (2008).

    Article  CAS  Google Scholar 

  14. A. Zhukov, V. Rodionova, M. Ilyn, A. M. Aliev, R. Varga, S. Michalik, A. Aronin, G. Abrosimova, A. Kiselev, M. Ipatov, and V. Zhukova, “Magnetic properties and magnetocaloric effect in Heusler-type glass-coated NiMnGa microwires,” J. Alloys Compd. 575, 73–79 (2013).

    Article  CAS  Google Scholar 

  15. V. Zhukova, A. M. Aliev, R. Varga, A. Aronin, G. Abrosimova, A. Kiselev, and A. Zhukov, “Magnetic properties and MCE in Heusler-type glass-coated microwires,” J. Supercond. Nov. Magn. 26, 1415–1419 (2013).

    Article  CAS  Google Scholar 

  16. O. Pavlukhina, V. Sokolovskiy, and V. Buchelnikov, “Theoretical modeling of heat transfer processes in Ni–Co–Mn–In magnetic wires,” in Proceedings of the 7th International Conf. on Magnetic Refrigeration at Room Temperature (Thermag VII) (Turin, 2016), pp. 202–205.

  17. O. Pavlukhina, V. Sokolovskiy, and V. Buchelnikov, “Modeling of heat transfer processes in Ni2MnIn magnetic wires,” Phys. Status Solidi A 213 (2), 390–398 (2016).

    Article  CAS  Google Scholar 

  18. O. O. Pavlukhina, V. V. Sokolovskiy, V. D. Buchelnikov, and M. A. Zagrebin, “Theoretical study of heat transfer processes in Heusler-type magnetic microwires,” Lett. Mater. 9 (4), 395–399 (2019).

    Article  Google Scholar 

  19. O. C. Zienkiewicz and K. Morgan, Finite Elements and Approximations (Wiley, New York, 1983).

    Google Scholar 

  20. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method: Fluid Dynamics (Butterworth-Heinemann, London, 2000).

    Google Scholar 

  21. E. W. Washburn, International Critical Tables of Numerical Data, Physics, Chemistry and Technology (McGraw-Hill, New York, 1929), Vol. 5.

    Google Scholar 

  22. Y. Hao, L. Zhang, and J. Zhu, “The electronic structure, phase transition, elastic, thermodynamic, and thermoelectric properties of FeRh: high-temperature and high-pressure study,” Z. Naturforsch., A: Phys. Sci. 75 (9), 789–801 (2020).

    CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Education and Science of the Russian Federation within State assignment no. 075-01391-22-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Pavlukhina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlukhina, O.O., Sokolovskiy, V.V., Buchelnikov, V.D. et al. Study of Heat Transfer Processes in a System Containing Fe–Rh Microwires. Phys. Metals Metallogr. 123, 381–385 (2022). https://doi.org/10.1134/S0031918X22040093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22040093

Keywords:

Navigation