Skip to main content
Log in

Direct and Inverse Magnetocaloric Effect in a Ni50Mn35Al2Sn13 Heusler-Alloy Ribbon Sample

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The magnetization of a fast-hardened ribbon Ni50Mn35Al2Sn13 sample has been studied and its magnetocaloric effect (MCE) has been directly measured in the temperature range 100–350 K. The MCE has been investigated in a cyclic magnetic field of 1.8 T strength at a frequency of 0.2 Hz. The value of the inverse effect near the temperature of the magnetostructural phase transition (MSPT) has been shown to depend on the rate of temperature scanning. The higher the scanning rate, the greater the MCE value due to the kinetic relaxation effect in the martensitic phase and the irreversibility of the phase transition in the magnetic fields used. The value of the inverse effect when the magnetic field is turned on once is –0.39 K in the field of 18 kOe, and the value of the direct effect is 0.2 K. The significant magnetization increase observed near the ТС in a weak magnetic field (100 Oe) has been attributed to both the Hopkinson effect and the coexistence of two crystalline phases (austenite–martensite).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. B. Yu, M. Liu, P. W. Egolf, and A. Kitanovski, “A review of magnetic refrigerator and heat pump prototypes built before the year 2010,” Int. J. Refrig. 33 (6), 10291060 (2010).

    Google Scholar 

  2. K. Klinar and A. Kitanovski, “Thermal control elements for caloric energy conversion (review),” Renewable Sustainable Energy Rev. 118, 109571 (2020).

    Article  Google Scholar 

  3. Y. Zhang, “Review of the structural, magnetic and magnetocaloric properties internary rare earth RE2T2X type intermetallic compounds,” J. Alloys Compd. 787, 1173–1186 (2019).

    Article  CAS  Google Scholar 

  4. L. Li and M. Yan, “Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration,” J. Alloys Compd. 823, 153810 (2020).

    Article  CAS  Google Scholar 

  5. A. M. Aliev, A. B. Batdalov, I. K. Kamilov, V. V. Koledov, V. G. Shavrov, V. D. Buchelnikov, J. García, V. M. Prida, and B. Hernando, “Magnetocaloric effect in ribbon samples of Heusler alloys Ni–Mn–M (M = In, Sn),” Appl. Phys. Lett. 97, 212505 (2010).

    Article  Google Scholar 

  6. A. Aryala, Y. Koshkid’ko, I. Dubenko, C. F. Sánchez-Valdésc, J. L. Sánchez Llamazares, E. Lähderanta, S. Pandey, A. Granovsky, J. Cwik, S. Stadler, and N. Ali, “Direct and indirect measurements of the magnetic and magnetocaloric properties of Ni0.895Cr0.105MnGe1.05 melt-spun ribbons in high magnetic fields,” J. Magn. Magn. Mater. 488, 165359 (2019).

    Article  Google Scholar 

  7. I. D. Rodionova, Y. S. Koshkid’ko, J. Cwik, A. Quetz, S. Pandey, A. Aryal, I. S. Dubenko, S. Stadler, N. Ali, I. S. Titov, M. Blinov, M. V. Prudnikova, V. N. Prudnikov, E. Lähderanta, and A. B. Granovskii, “Magnetocaloric effect in Ni50Mn35In15 Heusler alloy in low and high magnetic fields,” JETP Lett. 101 (6), 385–389 (2015).

    Article  Google Scholar 

  8. T. Gottschall, K.P. Skokov, B. Frincu, and O. Gutfleisch, “Large reversible magnetocaloric effect in Ni–Mn–In–Co,” Appl. Phys. Lett. 106 (2), 021901 (2015).

    Article  Google Scholar 

  9. T. Gottschall, A. Gràcia-Condal, M. Fries, A. Taubel, L. Pfeuffer, L. Mañosa, A. Planes, K. P. Skokov, and O. Gutfleisch, “A multicaloric cooling cycle that exploits thermal hysteresis,” Nat. Mater. 17, 929–934 (2018).

    Article  CAS  Google Scholar 

  10. T. Gottschall, K. P. Skokov, F. Scheibel, M. Acet, M. Ghorbani Zavareh, Y. Skourski, J. Wosnitza, M. Farle, and O. Gutfleisch, “Dynamical effects of the martensitic transition in magnetocaloric Heusler alloys from direct ∆T ad measurements under different magnetic-field-sweep rates,” Phys. Rev. Appl. 5 (2), 024013 (2016).

    Article  Google Scholar 

  11. A. G. Gamzatov, A. M. Aliev, A. Ghotbi Varzaneh, P. Kameli, I. Abdolhosseini Sarsari, and S. C. Yu, “Inverse-direct magnetocaloric effect crossover in Ni47Mn40Sn12.5Cu0.5 Heusler alloy in cyclic magnetic fields,” Appl. Phys. Lett. 113, 172406 (2018).

    Article  Google Scholar 

  12. H. Y. Nguyen, T. M. Nguyen, M. Q. Vu, T. T. Pham, D. T. Tran, H. D. Nguyen, L. T. Nguyen, H. H. Nguyen, V. Koledov, A. Kamantsev, A. Mashirov, and H. D. Nguyen, “Influence of Al on structure, magnetic properties and magnetocaloric effect of Ni50Mn37 – xAlxSn13 ribbons,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 9, 025007 (2018).

    Google Scholar 

  13. A. G. Gamzatov, A. B. Batdalov, Sh. K. Khizriev, A. M. Aliev, L. N. Khanov, N. H. Yen, N. H. Dan, H. Zhou, S.-C. Yu, and D.-H. Kim, “Phase transitions, thermal, electrical, and magnetocaloric properties of Ni50Mn37 – xAlxSn13 (x = 2, 4) ribbon samples,” J. Alloys Compd. 842, 155783 (2020).

    Article  CAS  Google Scholar 

  14. A. G. Gamzatov, A. M. Aliev, A. B. Batdalov, Sh. K. Khizriev, D. A. Kuzmin, A. P. Kamantsev, D.‑H. Kim, N. H. Yen, N. H. Dan, and S.-C. Yu, “Dynamics of the magnetocaloric effect in cyclic magnetic fields in Ni50Mn35Al2Sn13 ribbon sample,” J. Mater. Sci. 56, 15397–15406 (2021).

    Article  CAS  Google Scholar 

  15. V. Zhukova, M. Ipatov, A. Granovsky, and A. Zhukov, “Magnetic properties of Ni–Mn–In–Co Heusler-type glass-coated microwires,” J. Appl. Phys. 115, 17A939 (2014).

  16. L. H. Bennett, V. Provenzano, R.D. Shull, I. Levin, E. Dell Torre, and Y. Jin, “Ferri- to ferro-magnetic transition in the martensitic phase of a Heusler alloy,” J. Alloys Compd. 525, 34–38 (2012).

    Article  CAS  Google Scholar 

  17. M. Ovichi, H. Elbidweihy, E. Della Torre, L. H. Bennett, M. Ghahremani, F. Johnson, and M. Zou, “Magnetocaloric effect in NiMnInSi Heusler alloys,” J. Appl. Phys. 117, 17D107 (2015).

  18. L. González-Legarreta, W. O. Rosa, J. García, et al., “Annealing effect on the crystal structure and exchange bias in Heusler Ni45.5Mn43.0In11.5 alloy ribbons,” J. Alloys Compd. 582, 588–593 (2014).

    Article  Google Scholar 

  19. A. M. Aliev, “Direct magnetocaloric effect measurement technique in alternating magnetic fields, 2014. arXiv:1409.6898.

  20. A. M. Aliev, A. B. Batdalo, and V. S. Kalitka, “Magnetocaloric properties of manganites in alternating magnetic fields,” Pis’ma Zh. Eksp. Teor. Fiz. 90, 736–739 (2009).

    Google Scholar 

  21. P. Czaja, J. Przewoźnik, Ł. Gondek, L. Hawelek, A. Żywczak, and E. Zschech, “Low temperature stability of 4O martensite in Ni49.1Mn38.9Sn12 metamagnetic Heusler alloy ribbons,” J. Magn. Magn. Mater. 421, 19–24 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank S-C. Yu for the samples.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-38-90230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. K. Khizriev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamzatov, A.G., Khizriev, S.K. & Aliev, A.M. Direct and Inverse Magnetocaloric Effect in a Ni50Mn35Al2Sn13 Heusler-Alloy Ribbon Sample. Phys. Metals Metallogr. 123, 392–396 (2022). https://doi.org/10.1134/S0031918X22040056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22040056

Keywords:

Navigation