Skip to main content
Log in

The Magnetocaloric Effect upon Adiabatic Demagnetization of a Polycrystalline DyNi2 Alloy

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Direct measurements of the magnetocaloric effect of the DyNi2 alloy are performed under quasi-adiabatic conditions in a temperature range of 15 to 70 K in magnetic fields up to 10 T using a superconducting cryomagnetic system. Results of the measurements show that, in the phase transition temperature range of the DyNi2 alloy, the maximum adiabatic temperature change at a temperature of 46 K in a magnetic field of 10 T is ∆Tad = –6.2 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. Numazawaa, K. Kamiya, T. Utaki, and K. Matsumoto, “Magnetic refrigerator for hydrogen liquefaction,” Supercond. Cryog. 15, 1–8 (2013).

    Article  Google Scholar 

  2. J. Park, S. Jeong, and I. Park, “Development and parametric study of the convection-type stationary adiabatic demagnetization refrigerator (ADR) for hydrogen re-condensation,” Cryogenics 71, 82–89 (2015).

    Article  CAS  Google Scholar 

  3. A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (CRC Press, Boca Raton, FL, 2003).

    Book  Google Scholar 

  4. N. Flerov, E. A. Mikhaleva, M. V. Gorev, and A. V. Kartashev, “Caloric and multicaloric effects in oxygen ferroics and multiferroics,” Phys. Solid State 57, 429–441 (2015).

    Article  CAS  Google Scholar 

  5. K. P. Belov, Magneto-Thermal Phenomena in the Rare-Earth Magnetic (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  6. S. A. Nikitin, Magnetic Properties Rare-Earth Metals and Their Alloys (Moscow State Univ., Moscow, 1989) [in Russian].

    Google Scholar 

  7. A. S. Andreenko, K. P. Belov, S. A. Nikitin, and A. M. Tishin, “Magnetocaloric effects in rare-earth magnetic materials,” Sov. Phys.-Usp. 32, 649–664 (1989).

    Article  Google Scholar 

  8. V. B. Chzhan, I. S. Tereshina, A. Yu. Karpenkov, and E. A. Tereshina-Chitrova, “Persistent values of magnetocaloric effect in the multicomponent Laves phase compounds with varied composition,” Acta Mater. 154, 303–310 (2018).

    Article  CAS  Google Scholar 

  9. J. Ćwik, “Magnetism and magnetocaloric effect in multicomponent Laves-phase compounds: Study and comparative analysis,” J. Solid State Chem. 209, 13–22 (2014).

    Article  Google Scholar 

  10. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida, “Magnetic-field-induced shape recovery by reverse phase transformation,” Nature 439, 957–960 (2006).

    Article  CAS  Google Scholar 

  11. E. Stern-Taulats, P. O. Castillo-Villa, L. Mañosa, C. Frontera, S. Pramanick, S. Majumdar, and A. Planes, “Magnetocaloric effect in the low hysteresis Ni–Mn–In metamagnetic shape-memory Heusler alloy,” J. Appl. Phys. 115, 173907 (2014).

    Article  Google Scholar 

  12. B. Emre, S. Yüce, E. Stern-Taulats, A. Planes, S. Fabbrici, F. Albertini, and L. Mañosa, “Large reversible entropy change at the inverse magnetocaloric effect in Ni–Co–Mn–Ga–In magnetic shape memory alloys,” J. Appl. Phys. 113, 213905 (2013).

    Article  Google Scholar 

  13. J. Ćwik, Yu. S. Koshkid’ko, N. A. de Oliveira, K. Nenkov, A. Hackemer, E. Dilmieva, N. Kolchugina, S. Nikitin, and K. Rogacki, “Magnetocaloric effect in Laves-phase rare-earth compounds with the second-order magnetic phase transition: Estimation of the high-field properties,” Acta Mater. 133, 230–239 (2017).

    Article  Google Scholar 

  14. A. V. Mashirov, A. P. Kamantsev, E. T. Dil’mieva, Ya. Zvik, V. I. Nizhankovskii, I. S. Tereshina, and V. G. Shavrov, “Analysis of the multifunctional Heusler alloy Ni43Mn37.8In12.2Co7 using an extraction magnetic calorimeter,” Zh. Radioelektron. 12, 9–9 (2014).

    Google Scholar 

  15. Yu. S. Koshkid’ko, E. T. Dilmieva, J. Cwik, K. Rogacki, D. Kowalska, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, V. I. Valkov, A. V. Golovchan, A. P. Sivachenko, S. N. Shevyrtalov, V. V. Rodionovad, I. V. Shchetinin, et al., “Giant reversible adiabatic temperature change and isothermal heat transfer of MnAs single crystals studied by direct method in high magnetic fields,” J. Alloys Compd. 798, 810–819 (2019).

    Article  Google Scholar 

  16. E. T. Dilmieva, Yu. S. Koshkid’ko, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, J. Ćwik, V. V. Khovaylo, and B. Grande, “Research of magnetocaloric effect of Ni-Mn-In-Co- based Heusler alloys by the direct method in magnetic fields up to 14 T,” IEEE Trans. Magn. 53 (11), 1–5 (2017).

    Article  Google Scholar 

  17. A. P. Kamantsev, A. A. Amirov, Yu. S. Koshkid’ko, C. Salazar Mejía, A. V. Mashirov, A. M. Aliev, V. V. Koledov, and V. G. Shavrov, “Magnetocaloric effect in alloy Fe49Rh51 in pulsed magnetic fields up to 50 T,” Phys. Solid State 62, 160–163 (2020).

    Article  CAS  Google Scholar 

  18. A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dilmieva, V. G. Shavrov, J. Ćwik, A. S. Los, V. I. Nizhankovskii, K. Rogacki, I. S. Tereshina, Yu. S. Koshkid’ko, M. V. Lyange, V. V. Khovaylo, and P. Ari-Gur, “Magnetocaloric and thermomagnetic properties of Ni2.18Mn0.82Ga Heusler alloy in high magnetic fields up to 140 kOe,” J. Appl. Phys. 117, 163903 (2015).

    Article  Google Scholar 

  19. T. Gottschall, M. D. Kuz’min, K. P. Skokov, Y. Skourski, M. Fries, O. Gutfleisch, M. Ghorbani Zavareh, D. L. Schlagel, Y. Mudryk, V. Pecharsky, and J. Wosnitza, “Magnetocaloric effect of gadolinium in high magnetic fields,” Phys. Rev. B 99, 134429 (2019).

    Article  CAS  Google Scholar 

  20. T. Gottschall, K. P. Skokov, F. Scheibel, M. Acet, M. G. Zavareh, Y. Skourski, J. Wosnitza, M. Farle, and O. Gutfleisch, “Dynamical effects of the martensitic transition in magnetocaloric Heusler alloys from direct ΔT ad measurements under different magnetic-field-sweep rates,” Phys. Rev. Appl. 5, 024013 (2016).

    Article  Google Scholar 

  21. P. J. von Ranke, N. A. de Oliveira, M. V. Tovar Costa, E. P. Nobrega, A. Caldas, and I. G. de Oliveira, “The influence of crystalline electric field on the magnetocaloric effect in the series RAl2 (R = Pr, Nd, Tb, Dy, Ho, Er, and Tm),” J. Magn. Magn. Mater. 226–230, 970–972 (2001).

    Article  Google Scholar 

  22. P. J. Ibarra-Gaytan, C. F. Sánchez-Valdes, J. L. Sánchez Llamazares, P. Álvarez-Alonso, P. Gorria, and J. A. Blanco, “Texture-induced enhancement of the magnetocaloric response in melt-spun DyNi2 ribbons,” Appl. Phys. 103, 152401 (2013).

    Google Scholar 

  23. P. J. von Ranke, V. K. Pecharsky, and K. A. Gschneidner Jr., “Influence of the crystalline electrical field on the magnetocaloric effect of DyAl2, ErAl2, and DyNi2,” Phys. Rev. B 58, 12110 (1998).

    Article  CAS  Google Scholar 

  24. T. Tohei and H. Wada, “Change in the character of magnetocaloric effect with Ni substitution in Ho(Co1 – xNix)2,” J. Magn. Magn. Mater. 280, 101–107 (2004).

    Article  CAS  Google Scholar 

  25. Yu. S. Koshkid’ko, J. Cwik, T. I. Ivanova, S. A. Nikitin, M. Miller, and K. Rogacki, “Magnetocaloric properties of Gd in fields up to 14 T,” J. Magn. Magn. Mater. 433, 234–238 (2017).

    Article  Google Scholar 

  26. M. Ghahremani, H. M. Seyoum, H. ElBidweihy, E. Della Torre, and L. H. Bennett, “Adiabatic magnetocaloric temperature change in polycrystalline gadolinium—A new approach highlighting reversibility,” AIP Adv. 2, 032149 (2012).

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 20-79-10197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kuznetsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A.S., Mashirov, A.V., Aliev, A.M. et al. The Magnetocaloric Effect upon Adiabatic Demagnetization of a Polycrystalline DyNi2 Alloy. Phys. Metals Metallogr. 123, 397–401 (2022). https://doi.org/10.1134/S0031918X2204007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X2204007X

Keywords:

Navigation