Skip to main content
Log in

Notes on complexity growth rate, grand potential and partition function

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We examine the complexity/volume conjecture and further investigate the possible connections between complexity and partition function. The complexity/partition function relation is then utilized to study the complexity of the thermofield double state of extended SYK models for various conditions.The difference between the complexity/partition function relation with the complexity/action duality comes from the fact that partition function can be evaluated from more than one saddle point, so they differ at most at the non-perturbative level. We further analyze free energy and the growth rate of complexity in the neutral AdS-Vaidya black hole formed by collapsing an uncharged spherically symmetric thin shell of null fluid. The relation between the late-time complexity growth rate and black hole/SYK wormhole phase transition is also discussed. Finally, we check the Lloyd bound with our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited.

Notes

  1. This in turn implies \(d {\dot{C}}\ge 0\). The variation of the complex growth rate then has a property similar to entropy. Actually, the second law of complexity states [44]: If the computational complexity is less than maximum, then with overwhelming likelihood it will increase, both into the future and into the past.

  2. Note that complexity is related to the action via the CA duality. One can prove the equivalence of the CA duality and our proposal by noting that \(dC/dt \sim T \ln {\mathcal {Z}}\) and in the Euclidean signature, one has \(t \sim 1/T\), so that \(C \sim A\). The action A in the CA duality can be regarded as the quantum effective action in the saddle. However, \(\ln {\mathcal {Z}}\) can receive contribution from more one saddles. The difference between our proposal and the CA duality only at the non-perturbative level.

  3. In Refs. [71, 72, 74], the authors proved that in the case of light shockwave, the switchback effect will be reflected in the full-time evolution of complexity.

  4. Since time is not an operator in quantum mechanics, the energy-time uncertainty relationship does not mean that time must be uncertain, but it must take time to evolve to an orthogonal state.

References

  1. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from noncritical string theory. Phys. Lett. B 428, 105 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., Oz, Y.: Large N field theories, string theory and gravity. Phys. Rept. 323, 183 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Maldacena, J.M.: Eternal black holes in anti-de Sitter. JHEP 0304, 021 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  7. Hartman, T., Maldacena, J.: Time evolution of entanglement entropy from black hole interiors. JHEP 1305, 014 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Susskind, L.: Butterflies on the Stretched Horizon. [arXiv:1311.7379 [hep-th]]

  9. Susskind, L.: Computational complexity and black hole horizons. Fortsch. Phys. 64, 24 (2016). Addendum: Fortsch. Phys. 64, 44 (2016)

  10. Susskind, L.: Addendum to computational complexity and black hole horizons. Fortsch. Phys. 64, 44 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Stanford, D., Susskind, L.: complexity and shock wave geometries. Phys. Rev. D 90(12), 126007 (2014)

    Article  ADS  Google Scholar 

  12. Brown, A.R., Roberts, D.A., Susskind, L., Swingle, B., Zhao, Y.: Holographic complexity equals bulk action. Phys. Rev. Lett. 116(19), 191301 (2016)

    Article  ADS  Google Scholar 

  13. Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortsch. Phys. 61, 781 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Susskind, L.: ER=EPR, GHZ, and the consistency of quantum measurements. Fortsch. Phys. 64, 72 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Hayden, P., Preskill, J.: Black holes as mirrors: quantum information in random subsystems. JHEP 0709, 120 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Brown, A. R., Roberts, D. A., Susskind, L., Swingle, B., Zhao, Y.: Complexity, action, and black holes. Phys. Rev. D 93,(8):086006 (2016)

  17. Carmi, D., Myers, R.C., Rath, P.: Comments on holographic complexity. JHEP 1703, 118 (2017)

    Google Scholar 

  18. Yang, R.Q., Niu, C., Kim, K.Y.: Surface Counterterms and Regularized Holographic Complexity. JHEP 1709, 042 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Lehner, L., Myers, R.C., Poisson, E., Sorkin, R.D.: Gravitational action with null boundaries. Phys. Rev. D 94(8), 084046 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Miao, Y.G., Zhao, L.: Complexity-action duality of the shock wave geometry in a massive gravity theory. Phys. Rev. D 97(2), 024035 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. Carmi, D., Chapman, S., Marrochio, H., Myers, R.C., Sugishita, S.: On the time dependence of holographic complexity. JHEP 1711, 188 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. An, Y.S., Peng, R.H.: Effect of the dilaton on holographic complexity growth. Phys. Rev. D 97(6), 066022 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Cai, R.G., Sasaki, M., Wang, S.J.: Action growth of charged black holes with a single horizon. Phys. Rev. D 95(12), 124002 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Jiang, J., Zhang, M.: Holographic complexity of the electromagnetic black hole. arXiv:1905.07576 [hep-th]

  25. Mahapatra, S., Roy, P.: On the time dependence of holographic complexity in a dynamical Einstein-dilaton model. JHEP 1811, 138 (2018)

    Article  ADS  MATH  Google Scholar 

  26. Yaraie, E., Ghaffarnejad, H., Farsam, M.: Complexity growth and shock wave geometry in AdS-Maxwell-power-Yang Mills theory. Eur. Phys. J. C 78(11), 967 (2018)

    Article  ADS  MATH  Google Scholar 

  27. Cai, R.G., Ruan, S.M., Wang, S.J., Yang, R.Q., Peng, R.H.: Action growth for AdS black holes. JHEP 1609, 161 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Jiang, J.: Action growth rate for a higher curvature gravitational theory. Phys. Rev. D 98(8), 086018 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. Cano, P.A., Hennigar, R.A., Marrochio, H.: Complexity growth rate in lovelock gravity. Phys. Rev. Lett. 121(12), 121602 (2018)

    Article  ADS  Google Scholar 

  30. An, Y. S., Cai, R. G., Peng, Y.: Time dependence of holographic complexity in Gauss–Bonnet gravity. Phys. Rev. D 98, no. 10, 106013 (2018)

  31. Jiang, J., Li, X.W.: Adjusted complexity equals action conjecture. Phys. Rev. D 100(6), 066026 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  32. Fan, Z.Y., Guo, M.: Holographic complexity and thermodynamics of AdS black holes. Phys. Rev. D 100, 026016 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  33. Couch, J., Fischler, W., Nguyen, P.H.: Noether charge, black hole volume, and complexity. JHEP 1703, 119 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Fan, Z.Y., Guo, M.: On the Noether charge and the gravity duals of quantum complexity. JHEP 1808, 031 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  35. Ge, X.H., Wang, B.: Quantum computational complexity, Einstein’s equations and accelerated expansion of the Universe. JCAP 1802, 047 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  36. Du, L.-P., Wu, S.-F., Zeng, H.-B.: Holographic complexity of the disk subregion in (2+1)-dimensional gapped systems. Phys. Rev. D 98, 066005 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  37. Kastor, D., Ray, S., Traschen, J.: Enthalpy and the Mechanics of AdS Black Holes. Class. Quant. Grav. 26, 195011 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Kubiznak, D., Mann, R.B.: Black hole chemistry. Can. J. Phys. 93(9), 999 (2015)

    Article  ADS  Google Scholar 

  39. Dolan, B.P.: Where is the PdV in the first law of black hole thermodynamics. [arXiv:1209.1272 [gr-qc]]

  40. Frassino, A.M., Mann, R.B., Mureika, J.R.: Lower-dimensional black hole chemistry. Phys. Rev. D 92(12), 124069 (2015)

    Article  ADS  Google Scholar 

  41. Kubiznak, D., Mann, R.B., Teo, M.: Black hole chemistry: thermodynamics with Lambda. Class. Quant. Grav. 34(6), 063001 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Johnson, C.V.: Holographic heat engines. Class. Quant. Grav. 31, 205002 (2014)

    Article  ADS  Google Scholar 

  43. Liu, H. S., Lü, H., Ma, L., Tan, W. D.: Holographic complexity bounds. arXiv:1910.10723 [hep-th]

  44. Brown, A.R., Susskind, L.: Second law of quantum complexity. Phys. Rev. D 97(8), 086015 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  45. Yang, R.Q., Kim, K.Y.: Time evolution of the complexity in chaotic systems: concrete examples. [arXiv:1906.02052 [hep-th]]

  46. Hawking, S.W., Page, D.N.: Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87(4), 577–588 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  47. Pathria, R.K.: Statistical Mechanics, 2nd edn[M] (1996)

  48. Kitaev, A.: A simple model of quantum holography, talks at KITP, 7 April 2015 and 27 May 2015

  49. Maldacena, J., Stanford, D.: Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 94(10), 106002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  50. Davison, R.A., Fu, W., Georges, A., Gu, Y., Jensen, K., Sachdev, S.: Thermoelectric transport in disordered metals without quasiparticles: the Sachdev-Ye-Kitaev models and holography. Phys. Rev. B 95, 155131 (2017)

    Article  ADS  Google Scholar 

  51. Georges, A., Parcollet, O., Sachdevm, S.: Quantum fluctuations of a nearly critical Heisenberg spin glass. Phys. Rev. B 63, 134406 (2001)

    Article  ADS  Google Scholar 

  52. Song, X.-Y., Jian, C.-M., Balents, L.: A strongly correlated metal built from Sachdev-Ye-Kitaev modelsStrongly Correlated Metal Built from Sachdev-Ye-Kitaev Models. Phys. Rev. Lett. 119, 216601 (2017)

    Article  ADS  Google Scholar 

  53. Chowdhury, D., Werman, Y., Berg, E., Senthil, T.: Translationally invariant non-Fermi liquid metals with critical Fermi-surfaces: solvable models. Phys. Rev. X 8(3), 031024 (2018)

    Google Scholar 

  54. Jian, S.-K., Yao, H.: Solvable Sachdev-Ye-Kitaev models in higher dimensions: from diffusion to many-body localization. Phys. Rev. Lett. 119, 206602 (2017)

    Article  Google Scholar 

  55. Cai, W., Ge, X.-H., Yang, G.-H.: Diffusion in higher dimensional SYK model with complex fermions. JHEP 01, 076 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Patel, A.A., McGreevy, J., Arovas, D.P., Sachdev, S.: “Magnetotransport in a model of a disordered strange metal. Phys. Rev. X 8(2), 021049 (2018)

    Google Scholar 

  57. Maldacena, J., Qi, X.-L.: Eternal traversable wormhole. [arXiv:1804.00491 [hep-th]]

  58. Harlow, D., Jafferis, D.: The factorization problem in Jackiw–Teitelboim gravity. JHEP 02, 177 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Jafferis, D.L., Kolchmeyer, D.K.: Entanglement entropy in Jackiw–Teitelboim gravity. [arXiv:1911.10663 [hep-th]]

  60. Brown, A.R., Gharibyan, H., Lin, H.W., Susskind, L., Thorlacius, L., Zhao, Y.: The case of the missing gates: complexity of Jackiw–Teitelboim gravity. [arXiv:1810.08741 [hep-th]]

  61. Hartnoll, S.A.: Lectures on holographic methods for condensed matter physics. [arXiv:0903.3246 [hep-th]]

  62. Caldarelli, M.M., Cognola, G., Klemm, D.: Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories. Class. Quant. Grav. 17, 399 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Emparan, R., Johnson, C.V., Myers, R.C.: Surface terms as counterterms in the AdS/CFT correspondence. Phys. Rev. D 60, 104001 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  64. Mann, R.B.: Misner string entropy. Phys. Rev. D 60, 104047 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  65. Cvetic, M., Gibbons, G.W., Kubiznak, D., Pope, C.N.: Black hole enthalpy and an entropy inequality for the thermodynamic volume. Phys. Rev. D 84, 024037 (2011)

    Article  ADS  Google Scholar 

  66. Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Holography, thermodynamics and fluctuations of charged AdS black holes. Phys. Rev. D 60, 104026 (1999). https://doi.org/10.1103/PhysRevD.60.104026

    Article  ADS  MathSciNet  Google Scholar 

  67. Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Charged AdS black holes and catastrophic holography. Phys. Rev. D 60, 064018 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  68. Kubiznak, D., Mann, R.B.: P-V criticality of charged AdS black holes. JHEP 1207, 033 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Shenker, S.H., Stanford, D.: Multiple shocks. JHEP 1412, 046 (2014)

    Article  ADS  MATH  Google Scholar 

  70. Shenker, S.H., Stanford, D.: Black holes and the butterfly effect. JHEP 1403, 067 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Jiang, J.: Holographic complexity in charged Vaidya black hole. Eur. Phys. J. C 79(2), 130 (2019)

    Article  ADS  Google Scholar 

  72. Chapman, S., Marrochio, H., Myers, R.C.: Holographic complexity in Vaidya spacetimes. Part I. JHEP 06, 046 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  73. Lehner, L., Myers, R.C., Poisson, E., Sorkin, R.D.: Gravitational action with null boundaries. Phys. Rev. D 94, 8 (2016)

    MathSciNet  Google Scholar 

  74. Chapman, S., Marrochio, H., Myers, R.C.: Holographic complexity in Vaidya spacetimes. Part II. JHEP 06, 114 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Sabbata, V., Sivaram, C.: A minimal time and time-temperature uncertainty principle. Found. Phys. Lett. 5(2), 183–189 (1992)

    Article  MathSciNet  Google Scholar 

  76. Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Physica D 120, 188 (1998)

    Article  ADS  Google Scholar 

  77. Cottrell, W., Montero, M.: Complexity is simple. JHEP 02, 039 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Zloshchastiev, K.G.: Phys. Rev. Lett. 94, 121101 (2005)

    Article  ADS  Google Scholar 

  79. Feng, X.H., Lü, H., Wen, Q.: Scalar hairy black holes in general dimensions. Phys. Rev. D 89, 044014 (2014)

    Article  ADS  Google Scholar 

  80. Huang, H., Feng, X.H., Lü, H.: Holographic complexity and two identities of action growth. Phys. Lett. B 769, 357 (2017)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Hong Lü, Song He, Keun-Young Kim, Runqiu Yang and Qingbing Wang for helpful discussions. This work is partly supported by NSFC (No. 11875184 & No. 11805117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Hui Ge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Ge, XH. Notes on complexity growth rate, grand potential and partition function. Gen Relativ Gravit 54, 46 (2022). https://doi.org/10.1007/s10714-022-02933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02933-4

Keywords

Navigation