Skip to main content
Log in

Design, Optimization, and Characterization of Lysozyme-Loaded Poly(ɛ-Caprolactone) Microparticles for Pulmonary Delivery

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The success of the treatment of lung diseases with minimized side effects depends on the optimum design of microparticulate systems for pulmonary delivery that provide local delivery of drugs. This study aims to develop and evaluate optimized drug delivery systems against cystic fibrosis for pulmonary delivery.

Methods

Lysozyme, an antimicrobial peptide, was used as an alternative drug to conventional antibiotics. Since lysozyme is a water-soluble drug, lysozyme-loaded microparticles were prepared using the water-in-oil-in-water (w1/o/w2) double emulsion solvent evaporation method. Polycaprolactone (PCL) was chosen as a polymer due to its biocompatible and biodegradable properties. Designed microparticles were optimized utilizing 24 full factorial experimental design based on desired response factors including particle size and encapsulation efficiency (%EE).

Results and conclusion

Optimized formulation was found to display particle size of 8.75 ± 0.04 µm and %EE of 65.15 ± 0.00%. Results of SEM analysis have shown the spherical structure of microparticles with a smooth surface. Optimized microparticles were found to exhibit sustained release for up to 35 days after initial burst release. Mean median aerodynamic diameter (MMAD) and fine particle fraction (FPF) values were found to be 5.44 ± 0.19 μm and 50.99 ± 2.89%, respectively. These results demonstrated that optimized PCL microparticles can be used for pulmonary delivery of lysozyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Garbuzenko OB, Kbah N, Kuzmov A, Pogrebnyak N, Pozharov V, Minko T. Inhalation treatment of cystic fibrosis with lumacaftor and ivacaftor co-delivered by nanostructured lipid carriers. J Control Release. 2019;296:225–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhu C, Chen J, Yu S, Que C, Taylor LS, Tan W, Wu C, Zhou QT. Inhalable nanocomposite microparticles with enhanced dissolution and superior aerosol performance. Mol Pharm. 2020;17:3270–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Porsio B, Craparo EF, Mauro N, Giammona G, Cavallaro G. Mucus and cell-penetrating nanoparticles embedded in nanointo-micro formulations for pulmonary delivery of ıvacaftor in patients with cystic fibrosis. ACS Appl Mater Interfaces. 2018;10:165–81.

    Article  CAS  PubMed  Google Scholar 

  4. Sardo C, Di Domenico EG, Porsio B, De Rocco D, Santucci R, Ascenzioni F, Giammona G, Cavallaro G. Nanometric ion pair complexes of tobramycin forming microparticles for the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Int J Pharm. 2019;563:347–57.

    Article  CAS  PubMed  Google Scholar 

  5. Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol. 2016;306:48–58.

    Article  CAS  PubMed  Google Scholar 

  6. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37:177–92.

    Article  CAS  PubMed  Google Scholar 

  7. Seo MD, Won HS, Kim JH, Mishig OT, Lee BJ. Antimicrobial peptides for therapeutic applications: a review. Molecules. 2012;17:12276–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moghaddam MM, Barjini KA, Ramandi MF, Amani J. Investigation of the antibacterial activity of a short cationic peptide against multidrug-resistant Klebsiella pneumoniae and Salmonella typhimurium strains and its cytotoxicity on eukaryotic cells. World J Microbiol Biotechnol. 2014;30:1533–40.

    Article  CAS  PubMed  Google Scholar 

  9. Moghaddam MM, Aghamollaei H, Kooshki H, Barjini KA, Mirnejad R, Choopani A. The development of antimicrobial peptides as an approach to prevention of antibiotic resistance. Rev Med Microbiol. 2015;26:98–110.

    Article  Google Scholar 

  10. Wang G, Mishra B, Lau K, Lushnikova T, Golla R, Wang X. Human antimicrobial peptides and proteins. Pharmaceuticals. 2014;7:545–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grumezescu V, Holban AM, Sima LE, Chiritoiu MB, Chiritoiu GN, Grumezescu AM, Ivan L, Safciuc F, Antohe F, Florica C, Luculescu CR, Chifiriuc MC, Socol G. Laser deposition of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) - lysozyme microspheres based coatings with anti-microbial properties. Int J Pharm. 2017;521:184–95.

    Article  CAS  PubMed  Google Scholar 

  12. Wu T, Huang J, Jiang Y, Hu Y, Ye X, Liu D, Chen J. Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity. Food Chem. 2018;240:361–9.

    Article  CAS  PubMed  Google Scholar 

  13. Devrim B, Bozkır A, Canefe K. Preparation and evaluation of poly(lactic-co-glycolic acid) microparticles as a carrier for pulmonary delivery of recombinant human interleukin-2: II. In vitro studies on aerodynamic properties of dry powder inhaler formulations. Drug Dev Ind Pharm. 2011;37:1376–86.

    Article  CAS  PubMed  Google Scholar 

  14. Lee W-H, Loo C-Y, Traini D, Young PM. Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges. Asian J Pharm Sci. 2015;10:481–9.

    Article  Google Scholar 

  15. Juntke J, Murgia X, Günday Türeli N, Türeli AE, Thorn CR, Schneider M, Schneider-Daum N, Carvalho-Wodarz CS, Lehr C-M. Testing of aerosolized ciprofloxacin nanocarriers on cystic fibrosis airway cells infected with P. aeruginosa biofilms. Drug Deliv Transl Res. 2021;11:1752–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang MY, Chan JG, Chan HK. Pulmonary drug delivery by powder aerosols. Journal of The Control Release Society. 2014;193:228–40.

    Article  CAS  Google Scholar 

  17. Pulivendala G, Bale S, Godugu C. Inhalation of sustained release microparticles for the targeted treatment of respiratory diseases. Drug Deliv Transl Res. 2020;10:339–53.

    Article  CAS  PubMed  Google Scholar 

  18. Devrim B, Bozkır A, Canefe K. Preparation and evaluation of PLGA microparticles as carrier for the pulmonary delivery of rhIL-2: I. Effects of some formulation parameters on microparticle characteristics. J Microencapsulation. 2011;28:582–94.

    Article  CAS  PubMed  Google Scholar 

  19. Soomherun N, Kreua-Ongarjnukool N, Chumnanvej S, Thumsing S. Encapsulation of nicardipine hydrochloride and release from biodegradable poly(d,l-lactic-co-glycolic acid) microparticles by double emulsion process: effect of emulsion stability and different parameters on drug entrapment. Int J Biomater 2017;2017:1743765.

  20. Salatin S, Jelvehgari M. expert design and optimization of ethyl cellulose-poly(ε-caprolactone) blend microparticles for gastro-retentive floating delivery of metformin hydrochloride. Curr Drug Deliv. 2021;18:1125–35.

    Article  PubMed  Google Scholar 

  21. Devrim B, Bozkır A. Preparation and evaluation of double-walled microparticles prepared with a modified water-in-oil-in-oil-in-water (w1/o/o/w3) method. J Microencapsulation. 2013;30:741–54.

    Article  CAS  PubMed  Google Scholar 

  22. Nikfarjam S, Jouravleva E, Anisimov M, Woehl T. Effects of protein unfolding on aggregation and gelation in lysozyme solutions. Biomolecules. 2020;10:1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pharmacopoeia B. Preparations for inhalation. Aerodynamic assessment of fine particles–fine particle dose and particle size distribution (Ph. Eur. Method 2.9. 18). Br Pharmacop. 2005;4:A277–90.

    Google Scholar 

  24. Giménez VM, Sperandeo N, Faudone S, Noriega S, Manucha W, Kassuha D. Preparation and characterization of bosentan monohydrate/ε-polycaprolactone nanoparticles obtained by electrospraying. Biotechnol Prog. 2019;35(2):e2748.

    Article  PubMed  Google Scholar 

  25. Arunraj TR, Sanoj Rejinold N, Ashwin Kumar N, Jayakumar R. Doxorubicin-chitin-poly(caprolactone) composite nanogel for drug delivery. Int J Biol Macromol. 2013;62:35–43.

    Article  CAS  PubMed  Google Scholar 

  26. Kasten G, Silva LF, Lemos-Senna E. Development of low density azithromycin-loaded polycaprolactone microparticles for pulmonary delivery. Drug Dev Ind Pharm. 2016;42(5):776–87.

    Article  CAS  PubMed  Google Scholar 

  27. Bruinsmann FA, Buss JH, Souto GD, Schultze E, de Cristo Soares Alves A, Seixas FK, Collares TV, Pohlmann AR, Guterres SS. Guterres SS. Erlotinib-loaded poly(ε-caprolactone) nanocapsules improve in vitro cytotoxicity and anticlonogenic effects on human A549 lung cancer cells. AAPS PharmSciTech. 2020;21(6):229.

    Article  CAS  PubMed  Google Scholar 

  28. Su M, Hu H, Zhao X, Huang C, Yang B, Yin Z. Construction of mannose-modified polyethyleneimine-block-polycaprolactone cationic polymer micelles and its application in acute lung injury. Drug Deliv Transl Res. 2022;12(5):1080–95.

    Article  CAS  PubMed  Google Scholar 

  29. Oz UC, Devrim B, Bozkır A, Canefe K. Development of reconstitutable suspensions containing diclofenac sodium-loaded microspheres for pediatric delivery. J Microencapsul. 2015;32(4):317–28.

    Article  CAS  PubMed  Google Scholar 

  30. Mawazi SM, Doolaanea AA, Hadi HA, Chatterjee B. The impact of carbamazepine crystallinity on carbamazepine-loaded microparticle formulations. Int J Pharm. 2021;602:120638.

    Article  CAS  PubMed  Google Scholar 

  31. Sabbagh HAK, Hussein-Al-Ali SH, Hussein MZ, Abudayeh Z, Ayoub R, Abudoleh SM. A statistical study on the development of metronidazole-chitosan-alginate nanocomposite formulation using the full factorial design. Polymers. 2020;12:772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang YY, Chung TS, Ngee NP. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. 2001;22:231–41.

    Article  CAS  PubMed  Google Scholar 

  33. Jeffery H, Davis SS, O’hagan DT. The preparation and characterization of poly(lactide-co-glycolide) microparticles. II. The entrapment of a model protein using a (water-in-oil)-in-water emulsion solvent evaporation technique. Pharm Res. 1993;10:362–8.

    Article  CAS  PubMed  Google Scholar 

  34. Diez S, Conchita TDI. Versatility of biodegradable poly(d, l-lactic-co-glycolic acid) microspheres for plasmid DNA delivery. Eur J Pharm Biopharm. 2006;63:188–97.

    Article  CAS  PubMed  Google Scholar 

  35. Cui C, Stevens VC, Schwendeman SP. Injectable polymer microspheres enhance immunogenicity of a contraceptive peptide vaccine. Vaccine. 2007;25:500–9.

    Article  CAS  PubMed  Google Scholar 

  36. Feczkó T, Tóth J, Dósa G, Gyenis J. Optimization of protein encapsulation in PLGA nanoparticles. Chem Eng Process. 2011;50:757–65.

    Article  Google Scholar 

  37. Sadoun O, Rezgui F, G’Sell C. Optimization of valsartan encapsulation in biodegradables polyesters using Box-Behnken design. Mater Sci Eng C Mater Biol Appl. 2018;90:189–97.

    Article  CAS  PubMed  Google Scholar 

  38. Van De Weert M, Van ’T Hof R, Van Der Weerd J, Heeren MAR, Posthuma G, Hennink WE, Crommelin DJA. Lysozyme distribution and conformation in a biodegradable polymer matrix as determined by FTIR techniques. J Control Release. 2000;68:31–40.

    Article  CAS  PubMed  Google Scholar 

  39. Liverani L, Lacina J, Roether JA, Boccardi E, Killian MS, Schmuki P, Schubert DW, Boccaccini AR. Incorporation of bioactive glass nanoparticles in electrospun PCL/chitosan fibers by using benign solvents. Bioact Mater. 2018;3:55–63.

    Article  PubMed  Google Scholar 

  40. Kerman I, Toppare L, Yilmaz F, Yagci Y. Thiophene ended ϵ-caprolactone conducting copolymers and their electrochromic properties. J Macromol Sci. 2005;42:509–20.

    Article  Google Scholar 

  41. Jana S, Leung M, Chang J, Zhang M. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation. Biofabrication. 2014;6:35012.

    Article  CAS  Google Scholar 

  42. Bye JW, Falconer RJ. Thermal stability of lysozyme as a function of ion concentration: a reappraisal of the relationship between the Hofmeister series and protein stability. Protein Sci. 2013;22:1563–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cao XM, Tian Y, Wang ZY, Liu YW, Wang CX. Effects of protein and phosphate buffer concentrations on thermal denaturation of lysozyme analyzed by isoconversional method. Bioengineered. 2016;7:235–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Trevino SR, Scholtz JM, Pace CN. Measuring and increasing protein solubility. J Pharm Sci. 2008;97(10):4155–66.

    Article  CAS  PubMed  Google Scholar 

  45. Farhangi M, Mahboubi A, Kobarfard F, Vatanara A, Mortazavi SA. Optimization of a dry powder inhaler of ciprofloxacin-loaded polymeric nanomicelles by spray drying process. Pharm Dev Technol. 2019;24:584–92.

    Article  CAS  PubMed  Google Scholar 

  46. Gao P, Nie X, Zou M, Shi Y, Cheng G. Recent advances in materials for extended-release antibiotic delivery system. J Antibiot (Tokyo). 2011;64(9):625–34.

    Article  CAS  PubMed  Google Scholar 

  47. Soares S, Fonte P, Costa A, Andrade J, Seabra V, Ferreira D, Reis S, Sarmento B. Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. Int J Pharm. 2013;456:370–81.

    Article  CAS  PubMed  Google Scholar 

  48. Yang MY, Chan JGY, Chan H-K. Pulmonary drug delivery by powder aerosols. J Controlled Release. 2014;193:228–40.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burcu Devrim Gökberk.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devrim Gökberk, B., Erdinç, N. Design, Optimization, and Characterization of Lysozyme-Loaded Poly(ɛ-Caprolactone) Microparticles for Pulmonary Delivery. J Pharm Innov 18, 325–338 (2023). https://doi.org/10.1007/s12247-022-09648-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-022-09648-8

Keywords

Navigation