Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Policy-enabled stabilization of nitrous oxide emissions from livestock production in China over 1978–2017

Abstract

Mitigating livestock-related nitrous oxide (N2O) emissions is key for China to meet its 2060 carbon neutrality target. Here we present a comprehensive analysis of the magnitude, spatiotemporal variation and drivers of Chinese livestock N2O emissions from 1978 to 2017. We developed scenarios to explore emissions mitigation potential and associated marginal abatement costs and social benefits. The average growth rate of China’s livestock N2O emissions increased by 4.6% per year through 2006, falling sharply over 2007–2015 and gradually declining in 2017 due to a slowdown in population and meat-consumption growth rates. We estimate the technical mitigation potential of livestock N2O emissions in 2030 to be 7–21% (or 23.1–70.9 Gg N2O), with implementation costs of US$5.5 billion to US$6.0 billion. Priority regions for intervention were identified in the North China Plain, Northeast Plain and Lianghu Plain. Among mitigation opportunities, anaerobic digestion offers the greatest social benefit, while low crude protein feed is the most cost-effective option.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Trends of N2O emissions.
Fig. 2: Spatial and temporal distribution of N2O emissions from livestock production in China’s six agronomic regions between 1978 and 2017.
Fig. 3: Contribution of each driver to the change in Chinese N2O emissions from livestock production in the periods 1978–1996, 1996–2006 and 2006–2017.
Fig. 4: N2O emissions from Chinese livestock production in 2030 under different scenarios.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its supplementary information files, or are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The spatial analysis was run in ArcGIS v.10.2 and the statistical analysis was completed in SPSS v.13.0. All code is available upon request.

References

  1. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  2. WMO Greenhouse Gas Bulletin No. 14 (WMO, 2018).

  3. Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Tian, H. Q. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Davidson, E. A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2, 659–662 (2009).

    Article  ADS  CAS  Google Scholar 

  6. Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change 6, 452–461 (2016).

    Article  ADS  Google Scholar 

  7. Frank, S. et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5 degrees C target. Nat. Clim. Change 9, 66–72 (2019).

    Article  ADS  CAS  Google Scholar 

  8. EDGAR: Emissions Database for Global Atmospheric Research v.5.0 (European Commission, 2019); https://edgar.jrc.ec.europa.eu/overview.php?v=50_AP

  9. Bai, Z. H. et al. Nitrogen, phosphorus, and potassium flows through the manure management chain in china. Environ. Sci. Technol. 50, 13409–13418 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Duan, H. B. et al. Assessing China’s efforts to pursue the 1.5 °C warming limit. Science 372, 378–385 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Ding, T., Ning, Y. D. & Zhang, Y. Estimation of greenhouse gas emissions in China 1990–2013. Greenh. Gases 7, 1097–1115 (2017).

    Article  CAS  Google Scholar 

  12. Global Non-CO2 Greenhouse Gas Emission Projections & Mitigation Potential: 20152050 (EPA, 2019).

  13. FAOSTAT: The Food and Agriculture Organization of the United Nations Statistics (FAO, accessed 1 January 2021); https://www.fao.org/faostat/en/#data/

  14. Kurokawa, J. et al. Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2. Atmos. Chem. Phys. 13, 11019–11058 (2013).

    Article  ADS  CAS  Google Scholar 

  15. Li, N., Shang, L. W., Yu, Z. X. & Jiang, Y. Q. Estimation of agricultural greenhouse gases emission in interprovincial regions of China during 1996–2014. Nat. Hazards 100, 1037–1058 (2020).

    Article  Google Scholar 

  16. Luo, Z. B., Lam, S. K., Fu, H., Hu, S. Y. & Chen, D. L. Temporal and spatial evolution of nitrous oxide emissions in China: assessment, strategy and recommendation. J. Clean. Prod. 223, 360–367 (2019).

    Article  CAS  Google Scholar 

  17. Zhou, J. B., Jiang, M. M. & Chen, G. Q. Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949–2003. Energy Policy 35, 3759–3767 (2007).

    Article  Google Scholar 

  18. Zhuang, M. H. et al. Emissions of non-CO2 greenhouse gases from livestock in China during 2000–2015: magnitude, trends and spatiotemporal patterns. J. Environ. Manage. 242, 40–45 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, C. Z. et al. Rebuilding the linkage between livestock and cropland to mitigate agricultural pollution in China. Resour. Conserv. Recycl. 144, 65–73 (2019).

    Article  Google Scholar 

  20. Wu, H. J. et al. Nutrient-derived environmental impacts in Chinese agriculture during 1978–2015. J. Environ. Manage. 217, 762–774 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, F. et al. A new high-resolution N2O emission inventory for China in 2008. Environ. Sci. Technol. 48, 8538–8547 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Bai, Z. H. et al. China’s livestock transition: driving forces, impacts, and consequences. Sci. Adv. 4, eaar8534 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, Y. et al. Mitigating greenhouse gas and ammonia emissions from swine manure management: a system analysis. Environ. Sci. Technol. 51, 4503–4511 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Zheng, J. X., Liu, J. B., Han, S. H., Wang, Y. W. & Wei, Y. S. N2O emission factors of full-scale animal manure windrow composting in cold and warm seasons. Bioresour. Technol. 316, 123905 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Ma, L. et al. Modeling nutrient flows in the food chain of China. J. Environ. Qual. 39, 1279–1289 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Thompson, R. L. et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Change 9, 993 (2019).

    Article  ADS  CAS  Google Scholar 

  27. Hu, Y. C. et al. Food production in China requires intensified measures to be consistent with national and provincial environmental boundaries. Nat. Food 1, 572–582 (2020).

    Article  Google Scholar 

  28. Robinson, T. P. et al. Global Livestock Production Systems (FAO and ILRI, 2011).

  29. Zhang, X. M. et al. Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs. Nat. Commun. 11, 4357 (2020).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wei, Y. M. et al. Self-preservation strategy for approaching global warming targets in the post-Paris Agreement era. Nat. Commun. 11, 1624 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, P. et al. Northward shift of historical methane emission hotspots from the livestock sector in China and assessment of potential mitigation options. Agric. For. Meteorol. 272, 1–11 (2019).

    Article  ADS  Google Scholar 

  32. Bai, Z. H. et al. Changes in pig production in China and their effects on nitrogen and phosphorus use and losses. Environ. Sci. Technol. 48, 12742–12749 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Naylor, R. et al. Losing the links between livestock and land. Science 310, 1621–1622 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, F. et al. Chinese cropland losses due to urban expansion in the past four decades. Sci. Total Environ. 650, 847–857 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Gu, B. J., Zhang, X. L., Bai, X. M., Fu, B. J. & Chen, D. L. Four steps to food security for swelling cities. Nature 566, 31–33 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Jin, S. Q. et al. Decoupling livestock and crop production at the household level in China. Nat. Sustain. 4, 48–55 (2021).

    Article  Google Scholar 

  37. Jin, X. P. et al. Spatial planning needed to drastically reduce nitrogen and phosphorus surpluses in China’s agriculture. Environ. Sci. Technol. 54, 11894–11904 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Hou, Y., Velthof, G. L. & Oenema, O. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment. Glob. Change Biol. 21, 1293–1312 (2015).

    Article  ADS  Google Scholar 

  39. Pardo, G., Moral, R., Aguilera, E. & del Prado, A. Gaseous emissions from management of solid waste: a systematic review. Glob. Change Biol. 21, 1313–1327 (2015).

    Article  ADS  Google Scholar 

  40. Bernal, M. P., Alburquerque, J. A. & Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 100, 5444–5453 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Guo, Y. X. et al. Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nat. Food 1, 648–658 (2020).

    Article  CAS  Google Scholar 

  42. Jin, X., Zhang, N., Zhao, Z., Bai, Z. & Ma, L. Nitrogen budgets of contrasting crop–livestock systems in China. Environ. Pollut. 288, 117633 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Uwizeye, A. et al. Nitrogen emissions along global livestock supply chains. Nat. Food 1, 437–446 (2020).

    Article  CAS  Google Scholar 

  44. Bai, Z. H. et al. Food and feed trade has greatly impacted global land and nitrogen use efficiencies over 1961–2017. Nat. Food 2, 780–791 (2021).

    Article  Google Scholar 

  45. Annual European Union greenhouse gas inventory 1990–2018 and inventory report 2020 (EEA, 2020).

  46. Luo, Z. B., Hu, S. Y., Chen, D. J. & Zhu, B. From production to consumption: a coupled human–environmental nitrogen flow analysis in China. Environ. Sci. Technol. 52, 2025–2035 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Cui, X. Q. et al. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nat. Food 2, 886–893 (2021).

    Article  CAS  Google Scholar 

  48. Normile, D. China’s bold climate pledge earns praise—but is it feasible? Science 370, 17–18 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Asian Demographic and Human Capital Data Sheet 2018 (ADRI and IIASA, 2018).

  50. Guiding Opinion on Coordinating and Strengthening the Work Related to Climate Change and Environmental Protection (MEE, 2021).

  51. Du, Y. Y. et al. A global strategy to mitigate the environmental impact of China’s ruminant consumption boom. Nat. Commun. 9, 4133 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hou, Y., Velthof, G. L., Lesschen, J. P., Staritsky, I. G. & Oenema, O. Nutrient recovery and emissions of ammonia, nitrous oxide, and methane from animal manure in Europe: effects of manure treatment technologies. Environ. Sci. Technol. 51, 375–383 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Xu, P., Koloutsou-Vakakis, S., Rood, M. J. & Luan, S. Projections of NH3 emissions from manure generated by livestock production in China to 2030 under six mitigation scenarios. Sci. Total Environ. 607, 78–86 (2017).

    ADS  PubMed  Google Scholar 

  54. China Pollution Sources Census Committee. The First National Pollution Survey Census Data Set. China Environmental Science Press (2011).

  55. Xu, P. et al. Spatial variation of reactive nitrogen emissions from China’s croplands codetermined by regional urbanization and its feedback to global climate change. Geophys. Res. Lett. 47, e2019GL086551 (2020).

    Article  ADS  CAS  Google Scholar 

  56. Dietz, T. & Rose, E. A. Rethinking the environmental impacts of population, affluence and technology. Hum. Ecol. Rev. 1, 277–300 (1994).

    Google Scholar 

  57. Hoerl, A. E. & Kennard, R. W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 42, 80–86 (2000).

    Article  MATH  Google Scholar 

  58. Chen, Y. D. et al. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100. Sci. Data 7, 83 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).

  60. Livestock and Poultry Manure Utilization Action Program (MOA, 2017).

  61. Teng, F., Su, X. & Wang, X. Can China peak its non-CO2 GHG emissions before 2030 by implementing its nationally determined contribution? Environ. Sci. Technol. 53, 12168–12176 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Moller, K. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review. Agron. Sustain. Dev. 35, 1021–1041 (2015).

    Article  CAS  Google Scholar 

  63. Amann, M. et al. Cost-effective control of air quality and greenhouse gases in Europe: modeling and policy applications. Environ. Model. Softw. 26, 1489–1501 (2011).

    Article  Google Scholar 

  64. Klimont, Z. & Winiwarter, W. in Costs of Ammonia Abatement and the Climate Co-benefits (eds Reis, S. et al.) 233–261 (Springer, 2015).

  65. Winiwarter, W., Hoglund-Isaksson, L., Klimont, Z., Schoop, W. & Amann, M. Technical opportunities to reduce global anthropogenic emissions of nitrous oxide. Environ. Res. Lett. 13, 014011 (2018).

    Article  ADS  CAS  Google Scholar 

  66. Klimont, Z. & Winiwarter, W. Integrated Ammonia Abatement-Modelling of Emission Control Potentials and Costs in GAINS (IIASA, 2011).

  67. West, J. J. et al. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. Nat. Clim. Change 3, 885–889 (2013).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant number XDA20100104 to Y.Z.), the National Natural Science Foundation of China (grant numbers 41905079 to P.X. and 51961125203 and 92047302 to Y.Z.) and California Strategic Growth Council Climate Change Research Program (to B.Z.H.). The effort of A.C. was partly supported by a US Department of Energy grant (DE-SC0022074).

Author information

Authors and Affiliations

Authors

Contributions

P.X. and Y.Z. designed the study. P.X. performed the research. P.X. and Y.Z. analysed the data. P.X., G.L., B.L., H.L., F.Q. and S.H. wrote the initial draft of the paper. B.Z.H., F.Z., L.M., X.L. and A.C. reviewed and revised the manuscript. All authors contributed to the discussion and interpretation of the results.

Corresponding author

Correspondence to Yi Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Sujong Jeong, Wenbin Wu and Xin Zhang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Changes in the relative contributions of various animals to N2O emissions from the livestock production in China for the period 1978–2017.

Changes in the relative contributions of various animals to N2O emissions from the livestock production in China for the period 1978–2017.

Source data

Extended Data Fig. 2 Changes in livestock production and emission intensities.

Changes in livestock production and emission intensities. (a) The livestock population and gross economic value of livestock production scales are on the left axis; the animal protein production scale is on the right axis. (b) N2O emission intensity of the Chinese livestock production sector (left axis) and livestock products (right axis).

Source data

Extended Data Fig. 3 Reductions in N2O emissions from the livestock production in China in 2030 under five technical mitigation scenario alternatives.

Reductions in N2O emissions from the livestock production in China in 2030 under five technical mitigation scenario alternatives. LCP represents low crude protein (LCP) feed; AD represents anaerobic digestion; CPO represents composting; CBI represents the combination of AD and composting.

Source data

Extended Data Fig. 4 Comparison of the relative contributions of selected sources to the total N2O emissions from the livestock production.

Comparison of the relative contributions of selected sources to the total N2O emissions from the livestock production. (a) China in 2017 in this study, (b) United States (USA) in 2017 (ref. 12), and (c) European Union (EU-27) in 2017 (ref. 45).

Source data

Supplementary information

Supplementary Information

Supplementary Methods and Results, Figs. 1–4 and Tables 1–5.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Houlton, B.Z., Zheng, Y. et al. Policy-enabled stabilization of nitrous oxide emissions from livestock production in China over 1978–2017. Nat Food 3, 356–366 (2022). https://doi.org/10.1038/s43016-022-00513-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-022-00513-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing