Skip to main content
Log in

Melatonin Loaded Cardiac Homing Peptide-Functionalized Gold Nanoparticles for the Care of Anti-Cardiac Hypertrophy

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Myocardial fibrosis is responsible for the current ineffective treatment of heart hypertrophy. Recent research findings have shown that Melatonin (Mel) reduces heart hypertrophy and fibrosis by promoting sleep and melatonin levels in the body. With the use of poly(lactide) polycarboxy betaine (PLGA-COOH), cardiac homing peptide, and gold nanoparticles (AuNPs), we have developed a unique melatonin delivery and transportation approach via a simple two-step procedure, which we discuss in this study. A mouse model of pressure overdrive cardiac hypertrophy was used to evaluate the effects of nanoparticles (Mel/CHP@AuNPs) on myocardial fibrosis and hypertrophy in the heart. The nanocomposites of Mel/CHP@AuNPs have a diameter of 220.5 ± 4.25 nm and negative zeta potential of 20.18 ± 1.29 mV. An excellent encapsulation capacity for AuNPs (76.12 ± 4.01%) and Melatonin (78.58 ± 5.79%) were found in the Mel/CHP@AuNPs and magnetic characteristics that showed no residual magnetization or coercivity, as demonstrated by the construction of magnetic hysteresis curves. For example, the in vivo echocardiography and real-time polymerase chain reaction (RT-PCR) and histological evaluations demonstrated that Mel/CHP@AuNPs' low dosages improved myocardial hypertrophy and fibrosis. One of the most promising nanoagents for the treatment of cardiac disease is these basic biocompatible, dual-targeting nanoagents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mao Y, Hu Y, Feng W, Yu L, Li P, Cai B, Li C, Guan H (2020) Effects and mechanisms of PSS-loaded nanoparticles on coronary microcirculation dysfunction in streptozotocin-induced diabetic cardiomyopathy rats. Biomed. Pharmacother 121:109280

    Article  CAS  PubMed  Google Scholar 

  2. Mao S, Wang L, Chen P, Lan Y, Guo R, Zhang M (2018) Nanoparticle-mediated delivery of Tanshinone IIA reduces adverse cardiac remodeling following myocardial infarctions in a mice model: role of NF-κB pathway. Artif Cells Nanomed Biotechnol 46:S707–S716

    Article  CAS  PubMed  Google Scholar 

  3. Sun L, Hu Y, Mishra A, Sreeharsha N, Moktan JB, Kumar P, Wang L (2020) Protective role of poly (lactic-co-glycolic) acid nanoparticle loaded with resveratrol against isoproterenol-induced myocardial infarction. BioFactors 46:421–431

    Article  CAS  PubMed  Google Scholar 

  4. Boarescu P-M, Chirilă I, Bulboacă AE, Bocșan IC, Pop RM, Gheban D, Bolboacă SD (2019) Effects of curcumin nanoparticles in isoproterenol-induced myocardial infarction. Oxid Med Cell. Longev 2019:1–13

    Article  CAS  Google Scholar 

  5. Passaro F, Tocchetti CG, Spinetti G, Paudice F, Amborsone L, Costagliola C, Cacciatore F, Abete P, Testa G (2021) Targeting fibrosis in the failing heart with nanoparticles. Adv Drug Deliv Rev 174:461–481

    Article  CAS  PubMed  Google Scholar 

  6. Feng L, Ning R, Liu J, Liang S, Xu Q, Liu Y, Liu W, Duan J, Sun Z (2020) Silica nanoparticles induce JNK-mediated inflammation and myocardial contractile dysfunction. J Hazard Mater 391:122206

    Article  CAS  PubMed  Google Scholar 

  7. Hu C, Li L (2019) Melatonin plays critical role in mesenchymal stem cell-based regenerative medicine in vitro and in vivo. Stem Cell Res Ther 10:1–11

    Article  CAS  Google Scholar 

  8. Correa VLR, Martins JA, de Souza TR, de Rincon GCN, Miguel MP, de Menezes LB, Amaral AC (2020) Melatonin loaded lecithin-chitosan nanoparticles improved the wound healing in diabetic rats. Int J Biol Macromol 162:1465–1475

    Article  CAS  Google Scholar 

  9. de Oliveira Junior ER, Nascimento TL, Salomão MA, da Silva ACG, Valadares MC, Lima EM (2019) Increased nose-to-brain delivery of melatonin mediated by polycaprolactone nanoparticles for the treatment of glioblastoma. Pharm. Res. 36:1–10

    Article  CAS  Google Scholar 

  10. Najafi M, Shayesteh MRH, Mortezaee K, Farhood B, Haghi-Aminjan H (2020) The role of melatonin on doxorubicin-induced cardiotoxicity: a systematic review. Life Sci. 241:117173

    Article  CAS  PubMed  Google Scholar 

  11. Fu Z, Jiao Y, Wang J, Zhang Y, Shen M, Reiter RJ, Xi Q, Chen Y (2020) Cardioprotective role of melatonin in acute myocardial infarction. Front Physiol 11:366

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sarathkumar E, Victor M, Menon JA, Jibin K, Padmini S, Jayasree RS (2021) Nanotechnology in cardiac stem cell therapy: cell modulation, imaging and gene delivery. RSC Adv 11:34572–34588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gurunathan S, Jeyaraj M, Kang M-H, Kim J-H (2020) Melatonin enhances palladium-nanoparticle-induced cytotoxicity and apoptosis in human lung epithelial adenocarcinoma cells A549 and H1229. Antioxidants 9:357

    Article  CAS  PubMed Central  Google Scholar 

  14. Randhawa PK, Gupta MK (2020) Melatonin as a protective agent in cardiac ischemia-reperfusion injury: vision/illusion? Eur. J. Pharmacol. 885:173506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma Q, Yang J, Huang X, Guo W, Li S, Zhou H, Li J, Cao F, Chen Y (2018) Poly (lactide-co-glycolide)-monomethoxy-poly-(polyethylene glycol) nanoparticles loaded with melatonin protect adipose-derived stem cells transplanted in infarcted heart tissue. Stem Cells 36:540–550

    Article  CAS  PubMed  Google Scholar 

  16. Torabi H, Mehdikhani M, Varshosaz J, Shafiee F (2021) An innovative approach to fabricate a thermosensitive melatonin-loaded conductive pluronic/chitosan hydrogel for myocardial tissue engineering. J Appl Polym Sci 138:app50327

    Article  CAS  Google Scholar 

  17. Zare S, Heydari FS, Hayes AW, Reiter RJ, Zirak MR, Karimi G (2021) Melatonin attenuates chemical-induced cardiotoxicity. Hum Exp Toxicol 40:383–394

    Article  CAS  PubMed  Google Scholar 

  18. Lin Y, Liu J, Bai R, Shi J, Zhu X, Liu J, Guo J, Zhang W, Liu H, Liu Z (2020) Mitochondria-inspired nanoparticles with microenvironment-adapting capacities for on-demand drug delivery after ischemic injury. ACS Nano 14:11846–11859. https://doi.org/10.1021/acsnano.0c04727

    Article  CAS  PubMed  Google Scholar 

  19. Pan Q, Xu J, Wen C-J, Xiong Y-Y, Gong Z-T, Yang Y-J (2021) Nanoparticles: promising tools for the treatment and prevention of myocardial infarction. Int J Nanomedicine 16:6719

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mohamed Kasim MS, Sundar S, Rengan R (2018) Synthesis and structure of new binuclear ruthenium(ii) arene benzil bis(benzoylhydrazone) complexes: investigation on antiproliferative activity and apoptosis induction. Inorg Chem Front 5:585–596

    Article  CAS  Google Scholar 

  21. Swaminathan S, Haribabu J, Mohamed Subarkhan MK, Gayathri D, Balakrishnan N, Bhuvanesh N, Echeverria C, Karvembu R (2021) Impact of aliphatic acyl and aromatic thioamide substituents on the anticancer activity of Ru(ii)-p-cymene complexes with acylthiourea ligands—in vitro and in vivo studies. Dalt Trans 50:16311–16325

    Article  CAS  Google Scholar 

  22. Kalaiarasi G, Mohamed Subarkhan M, Fathima Safwana CK, Sruthi S, Sathiya Kamatchi T, Keerthana B, Ashok Kumar SL (2022) New organoruthenium(II) complexes containing N, X-donor (X=O, S) heterocyclic chelators: synthesis, spectral characterization, in vitro cytotoxicity and apoptosis investigation. Inorganica Chim. Acta. 535:120863

    Article  CAS  Google Scholar 

  23. Mohamed Subarkhan MK, Ramesh R, Liu Y (2016) Synthesis and molecular structure of arene ruthenium(ii) benzhydrazone complexes: impact of substitution at the chelating ligand and arene moiety on antiproliferative activity. New J Chem 40:9813–9823

    Article  CAS  Google Scholar 

  24. Subarkhan MKM, Ramesh R (2016) Ruthenium(ii) arene complexes containing benzhydrazone ligands: synthesis, structure and antiproliferative activity. Inorg Chem Front 3:1245–1255. https://doi.org/10.1039/C6QI00197A

    Article  CAS  Google Scholar 

  25. Sathiya Kamatchi T, Mohamed Subarkhan MK, Ramesh R, Wang H, Małecki JG (2020) Investigation into antiproliferative activity and apoptosis mechanism of new arene Ru(ii) carbazole-based hydrazone complexes. Dalt Trans 49:11385–11395

    Article  CAS  Google Scholar 

  26. Younis K, Ghoubaira JA, Bassil EP, Tantawi HN, Eid AH (2021) Metal-based nanoparticles: promising tools for the management of cardiovascular diseases. Nanomed Nanotechnol Biol Med 36:102433

    Article  CAS  Google Scholar 

  27. Jia C, Chen H, Wei M, Chen X, Zhang Y, Cao L, Yuan P, Wang F, Yang G, Ma J (2017) Gold nanoparticle-based miR155 antagonist macrophage delivery restores the cardiac function in ovariectomized diabetic mouse model. Int J Nanomedicine 12:4963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian A, Yang C, Zhu B, Wang W, Liu K, Jiang Y, Qiao Y, Fu H, Li Z (2018) Polyethylene-glycol-coated gold nanoparticles improve cardiac function after myocardial infarction in mice. Can J Physiol Pharmacol 96:1318–1327

    Article  PubMed  CAS  Google Scholar 

  29. Khan S, Hasan A, Attar F, Sharifi M, Siddique R, Mraiche F, Falahati M (2020) Gold nanoparticle-based platforms for diagnosis and treatment of myocardial infarction. ACS Biomater Sci Eng 6:6460–6477

    Article  CAS  PubMed  Google Scholar 

  30. Bakir EM, Younis NS, Mohamed ME, El Semary NA (2018) Cyanobacteria as nanogold factories: chemical and anti-myocardial infarction properties of gold nanoparticles synthesized by Lyngbya majuscula. Mar Drugs 16:217

    Article  PubMed Central  CAS  Google Scholar 

  31. Qiao Y, Zhu B, Tian A, Li Z (2017) PEG-coated gold nanoparticles attenuate β-adrenergic receptor-mediated cardiac hypertrophy. Int J Nanomedicine 12:4709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Namdari M, Negahdari B, Cheraghi M, Aiyelabegan HT, Eatmadi A (2017) Cardiac failure detection in 30 minutes: new approach based on gold nanoparticles. J Microencapsul 34:132–139

    Article  CAS  PubMed  Google Scholar 

  33. Zhang T, Dang M, Zhang W, Lin X (2020) Gold nanoparticles synthesized from Euphorbia fischeriana root by green route method alleviates the isoprenaline hydrochloride induced myocardial infarction in rats. J Photochem Photobiol B Biol 202:111705

    Article  CAS  Google Scholar 

  34. Bejarano J, Navarro-Marquez M, Morales-Zavala F, Morales JO, Garcia-Carvajal I, Araya-Fuentes E, Flores Y, Verdejo HE, Castro PF, Lavandero S, Kogan MJ (2018) Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: evolution toward prospective theranostic approaches. Theranostics 8:4710–4732. https://doi.org/10.7150/thno.26284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xiao L, Chen Y (2020) Ulinastatin-gold nanoparticles reduce sepsis-induced cardiomyocyte apoptosis through NF-κB pathway inactivation. Nanosci Nanotechnol Lett 12:1399–1405

    Article  Google Scholar 

  36. Tartuce LP, Brandt FP, dos Santos Pedroso G, Farias HR, Fernandes BB, da Costa Pereira B, Machado AG, Feuser PE, Silveira PCL, Nesi RT (2020) 2-methoxy-isobutyl-isonitrile-conjugated gold nanoparticles improves redox and inflammatory profile in infarcted rats. Coll Surf B Biointerfaces. 192:111012

    Article  CAS  Google Scholar 

  37. Prakash A, Crespo-Avilan GE, Hernandez-Resendiz S, Ong S-G, Hausenloy DJ (2020) Extracellular vesicles-mediating and delivering cardioprotection in acute myocardial infarction and heart failure. Cond Med 3:227

    PubMed  PubMed Central  Google Scholar 

  38. He Y, Guo Y, Xia Y, Guo Y, Wang R, Zhang F, Guo L, Liu Y, Yin T, Gao C (2019) Resistin promotes cardiac homing of mesenchymal stem cells and functional recovery after myocardial ischemia-reperfusion via the ERK1/2-MMP-9 pathway. Am J Physiol Circ Physiol 316:H233–H244

    Article  CAS  Google Scholar 

  39. Wang X, Chen Y, Zhao Z, Meng Q, Yu Y, Sun J, Yang Z, Chen Y, Li J, Ma T (2018) Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. J Am Heart Assoc 7:e008737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghosh S, Rai SK, Haldar C, Pandey RS (2020) Synthesis, Characterization, and Evaluation of Toxicity of Melatonin-Loaded Poly (D, L-Lactic Acid) Nanoparticles (Mel-PLA-Nanoparticles) and Its Putative Use in Osteoporosis. Innov Food Technol. Springer, Singapore, pp 385–394

    Chapter  Google Scholar 

  41. Barani M, Mukhtar M, Rahdar A, Sargazi S, Pandey S, Kang M (2021) Recent advances in nanotechnology-based diagnosis and treatments of human osteosarcoma. Biosensors 11:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ghosh S (2021) Melatonin loaded biodegradable nano-particles and osteoporosis: a mini review. Sch Acad J Pharm 6:102–106

    Article  CAS  Google Scholar 

  43. Poureini F, Najafpour GD, Nikzad M, Najafzadehvarzi H, Mohammadi M (2021) Loading of apigenin extracted from parsley leaves on colloidal core-shell nanocomposite for bioavailability enhancement. Coll Surf A Physicochem Eng Asp 625:126867

    Article  CAS  Google Scholar 

  44. Niazvand F, Orazizadeh M, Khorsandi L, Abbaspour M, Mansouri E, Khodadadi A (2019) Effects of quercetin-loaded nanoparticles on MCF-7 human breast cancer cells. Med B Aires 55:114

    Google Scholar 

  45. Teixeira MC, Carbone C, Sousa MC, Espina M, Garcia ML, Sanchez-Lopez E, Souto EB (2020) Nanomedicines for the delivery of antimicrobial peptides (Amps). Nanomaterials 10:560

    Article  CAS  PubMed Central  Google Scholar 

  46. Saleem N, Prasad A, Goswami SK (2018) Apocynin prevents isoproterenol-induced cardiac hypertrophy in rat. Mol Cell Biochem 445:79–88

    Article  CAS  PubMed  Google Scholar 

  47. Dong B, Liu C, Xue R, Wang Y, Sun Y, Liang Z, Fan W, Jiang J, Zhao J, Su Q (2018) Fisetin inhibits cardiac hypertrophy by suppressing oxidative stress. J Nutr Biochem 62:221–229

    Article  CAS  PubMed  Google Scholar 

  48. Lei H, Hu J, Sun K, Xu D (2021) The role and molecular mechanism of epigenetics in cardiac hypertrophy. Heart Fail Rev 26:1505–1514

    Article  PubMed  Google Scholar 

  49. Jung H, Lee E, Kim I, Song JH, Kim GJ (2019) Histone deacetylase inhibition has cardiac and vascular protective effects in rats with pressure overload cardiac hypertrophy. Physiol Res 68:727–737

    Article  CAS  PubMed  Google Scholar 

  50. Hou N, Li L-R, Shi Y-Y, Yuan W-C, Zhao G-J, Liu X-W, Cai S-A, Huang Y, Zhan H-X, Pan W-B (2021) Azilsartan ameliorates ventricular hypertrophy in rats suffering from pressure overload-induced cardiac hypertrophy by activating the Keap1–Nrf2 signalling pathway. J Pharm Pharmacol. https://doi.org/10.1093/jpp/rgab097

    Article  PubMed  Google Scholar 

  51. Kim GJ, Jung H, Lee E, Chung SW (2021) Histone deacetylase inhibitor, mocetinostat, regulates cardiac remodelling and renin-angiotensin system activity in rats with transverse aortic constriction-induced pressure overload cardiac hypertrophy. Rev Cardiovasc Med 22:1037–1045

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Fu.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Wang, B., Liang, T. et al. Melatonin Loaded Cardiac Homing Peptide-Functionalized Gold Nanoparticles for the Care of Anti-Cardiac Hypertrophy. J Polym Environ 30, 3791–3801 (2022). https://doi.org/10.1007/s10924-022-02452-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02452-y

Keywords

Navigation