Skip to main content
Log in

Effect of hollow insulation riser on shrinkage porosity and solidification structure of ingot

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The thermal insulation performance of riser is very important to the shrinkage porosity and solidification structure of ingot, but it is difficult to significantly improve due to the limit of thermal conductivity of riser material. A new type of hollow insulation riser was proposed based on the low thermal conductivity of air, which aims to improve the thermal insulation performance of riser. A 14.5-t steel ingot was prepared using the hollow insulation riser, and the casting temperature was 1500 °C. The temperature evolution of the external surface of mold during solidification was measured using an infrared temperature instrument. A numerical model was established to simulate the porosity and solidification structure of ingot. The reliability of numerical simulation was verified by comparing simulation and experimental results. Results show that the insulation performance of the riser can be significantly improved through application of the hollow insulation sleeve. Compared with solid insulation sleeve, the shrinkage cavity depth was decreased and the position of porosity was raised when hollow insulation riser was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E.S. Kweon, D.H. Roh, S.B. Kim, D.M. Stefanescu, Int. J. Metalcast. 14 (2020) 601–609.

    Article  Google Scholar 

  2. G.X. Liang, H.S. Cao, Ordnance Mater. Sci. Eng. 37 (2014) No. 2, 47–50.

    Google Scholar 

  3. B. Prajapati, H. Dhakal, M. Regmi, Int. J. Mech. Eng. Technol. 7 (2016) 46–56.

    Google Scholar 

  4. J.P. Duan, Y.L. Zhang, P.X. Fu, Steelmaking 32 (2016) No. 5, 67–71.

    Google Scholar 

  5. A. Rezaei, G. Ashuri, A. Farokhi, in: 8th Congress and 3rd International Engineering Materials and Metallurgy (2014) https://doi.org/10.13140/2.1.4097.8720.

  6. N.W. Wang, Y. Li, R.F. Li, X. Tang, in: H. Haeri (Eds.), Proceedings of the 4th Annual International Conference on Materials Science and Environmental Engineering, De Gruyter, Berlin, Boston, 2017, pp. 59–68. https://doi.org/10.1515/9783110516623-006.

  7. M. Heidarzadeh, H. Keshmiri, J. Iron Steel Res. Int. 20 (2013) No. 7, 78–83.

    Article  Google Scholar 

  8. T.J. Williams, R.A. Hardin, C. Beckermann, Int. J. Metalcast. 10 (2016) 535–555.

    Article  Google Scholar 

  9. J.Q. Cheng, X.J. Hu, Y. Gu, Z.L. Li, Foundry Technology 37 (2016) 110–113.

    Google Scholar 

  10. S.F. Hussainy, M.V. Mohiuddin, P. Laxminarayana, S. Sundarrajan, A. Krishnaiah, J. Manuf. Sci. Prod. 16 (2016) 163–171.

    Google Scholar 

  11. Y.J. Liu, M.G. Shen, Z.Q. Lv, X.H. Han, Metalurgija 57 (2018) 146–148.

    Google Scholar 

  12. . Deng, J. Kang, H. Shangguan, Y. Hu, T. Huang, Z. Liu, J. Mater. Process. Technol. 225 (2018) 516–523.

    Article  Google Scholar 

  13. J.A. Zhou, J.B. Xie, B. Wang, H. Lei, J. Therm. Anal. Calorim. 128 (2017) 481–489.

    Article  Google Scholar 

  14. J.A. Zhou, P. Zhou, X. Li, A type of metallurgical packaging device with vacuum shell, CHN, CN201110054782.3, 2013.

  15. J.B. Xie, J.A. Zhou, B. Wang, H. Lei, Special Steel 38 (2017) No. 3, 18–22.

    Google Scholar 

  16. P.B. Zhang, J.B. Zhang, B. Zou, Tundish with vacuum insulation structure, CHN, CN202020398006.X, 2020.

  17. Y.J. Liu, X.W. Liao, M.G. Shen, X.L. Zhu, K. Liu, AIP Adv. 11 (2021) 065005.

    Article  Google Scholar 

  18. J. Dong, Numerical simulation of temperature and thermal stress field in steel ingot solidification process and application, Xian University of Architecture and Technology, Xi’an, China, 2005.

  19. B.C. Liu, J.W. Kang, S.M. Xiong, Sci. Technol. Adv. Mater. 2 (2001) 157–164.

    Article  Google Scholar 

  20. Y.H. Zhao, J.J. Gao, H. Wang, Heavy Castings and Forgings (2012) No. 2, 12–16.

    Google Scholar 

  21. S.T. Qiu, H.P. Liu, Y. Gan, J. Iron Steel Res. 15 (2003) No. 6, 16–20.

    Google Scholar 

  22. B.L. Ning, Z.K. Yang, H.G. Chen, Iron and Steel 24 (1989) No. 5, 62–67+61.

  23. G.K. Sigworth, C. Wang, Metall. Trans. B 24 (1993) 349–364.

    Article  Google Scholar 

  24. A. Abootorabi, B. Korojy, M.A. Jabbareh, Ironmak. Steelmak. 47 (2020) 722–730.

    Article  Google Scholar 

  25. K.D. Carlson, Z. Lin, C. Beckermann, Metall. Mater. Trans. B 38 (2007) 541–555.

    Article  Google Scholar 

  26. S. Ou, K.D. Carlson, C. Beckermann, Metall. Mater. Trans. B 36 (2005) 97–116.

    Article  Google Scholar 

  27. Y.W. Lee, E. Chang, C.F. Chieu, Metall. Trans. B 21 (1990) 715–722.

    Article  Google Scholar 

  28. M. Rappaz, J.A. Dantzig, Solidification, EPFL Press, Lausanne, Switzerland, 2009.

    MATH  Google Scholar 

  29. X.L. Wang, Y.X. Wei, S.L. Zhang, J. Liaoning Instit. Technol. 14 (1994) No. 2, 17–20.

    Google Scholar 

  30. X.H. Xu, G.S. Feng, in: Z.G. Wang (Eds.), Refractory Technical Manual, China Metallurgical Press, Beijing, China, 2000, pp. 661–663.

    Google Scholar 

  31. W.S. Li, B.Z. Shen, H.F. Shen, B.C. Liu, in: 2011 CSM Annual Meeting Proceedings, The Chinese Society for Metals, Beijing, China, 2011, pp. 5224–5230.

  32. W. Li, L. Li, Y. Geng, X. Zang, Y. Jing, D. Li, B.G. Thomas, Metall. Mater. Trans. B 52 (2021) 2224–2238.

    Article  Google Scholar 

  33. Y. Nishida, W. Droste, S. Engler, Metall. Trans. B 17 (1986) 833–844.

    Article  Google Scholar 

  34. Ho, R.D. Pehlke, Metall. Trans. B 16 (1985) 585–594.

    Article  Google Scholar 

  35. I.L. Ferreira, J.E. Spinelli, J.C. Piers, A. Garcia, Mater. Sci. Eng. A 408 (2005) 317–325.

    Article  Google Scholar 

  36. P. Lan, J.Q. Zhang, J. Iron Steel Res. 26 (2014) No. 8, 29–36.

    Google Scholar 

  37. B.G. Thomas, I.V. Samarasekera, J.K. Brimacombe, Metall. Trans. B 18 (1987) 119–130.

    Article  Google Scholar 

  38. J.P. Holman, in: K.Y. Cai (Eds.), Heat transfer, China Machine Press, Beijing, China, 2005, pp. 335–339.

    Google Scholar 

  39. K.D. Carlson, C. Beckermann, Metall. Mater. Trans. A 40 (2009) 3054.

    Article  Google Scholar 

  40. K. Tashiro, S. Watanabe, I .Kitagawa, I. Tamura, Trans. Iron Steel Inst. Jpn. 23 (1983) 312–321.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from State Key Laboratory of Metal Material for Marine Equipment and Application (Grant No. SKLMEA-USTL-201705) and the National Natural Science Foundation of China (Grant No. 51974153).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan-ming Li or Xiao-lei Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yj., Peng, Cl., Li, Wm. et al. Effect of hollow insulation riser on shrinkage porosity and solidification structure of ingot. J. Iron Steel Res. Int. 29, 1951–1960 (2022). https://doi.org/10.1007/s42243-022-00790-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00790-8

Keywords

Navigation