Skip to main content
Log in

A weighted fuzzy C-means clustering method for hardness prediction

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The hardness prediction model was established by support vector regression (SVR). In order to avoid exaggerating the contribution of very tiny alloying elements, a weighted fuzzy C-means (WFCM) algorithm was proposed for data clustering using improved Mahalanobis distance based on random forest importance values, which could play a full role of important features and avoid clustering center overlap. The samples were divided into two classes. The top 10 features of each class were selected to form two feature subsets for better performance of the model. The dimension and dispersion of features decreased in such feature subsets. Comparing four machine learning algorithms, SVR had the best performance and was chosen to modeling. The hyper-parameters of the SVR model were optimized by particle swarm optimization. The samples in validation set were classified according to minimum distance of sample to clustering centers, and then the SVR model trained by feature subset of corresponding class was used for prediction. Compared with the feature subset of original data set, the predicted values of model trained by feature subsets of classified samples by WFCM had higher correlation coefficient and lower root mean square error. It indicated that WFCM was an effective method to reduce the dispersion of features and improve the accuracy of model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.Z. Wei, L.J. Xu, Acta Metall. Sin. 56 (2020) 523–538.

    Google Scholar 

  2. M. Jin, J.S. Lian, Z.H. Jiang, Acta Metall. Sin. 42 (2006) 405–410.

    Google Scholar 

  3. C.L. Hu, Y. Hu, Y.J. Zhang, Q.W. Deng, K.F. Quan, S.S. Li, Z. Zhao, Journal of Plasticity Engineering 27 (2020) No. 5, 7–11.

    Google Scholar 

  4. D.C. Wang, L.J. Wang, J.C. Guo, S.P. Ruan, S.L. Li, Heat Treatment of Metals 45 (2020) No. 8, 82–85.

    Google Scholar 

  5. J.H. Wang, S. Sun, Y.L. He, T.Y. Zhang, Sci. Sin. Technol. 49 (2019) 1148–1158.

    Article  Google Scholar 

  6. X.Y. Chen, H.Z. Fang, Q. Wang, S.Y. Zhang, R.R. Chen, Y.Q. Su, China Foundry 17 (2020) 429–434.

    Article  Google Scholar 

  7. D.M. Ji, Adv. Mater. Res. 616–618 (2013) 1787–1796.

    Google Scholar 

  8. N. Pillai, R. Karthikeyan, in: IOP Conf. Ser.: Mater. Sci. Eng. 346 (2018) 012067.

  9. R. Slavkovic, Z. Jugovic, S. Dragicevic, A. Jovicic, V. Slavkovic, Comput. Ind. Eng. 64 (2013) 850–857.

    Article  Google Scholar 

  10. S.F. Fang, M.P. Wang, W.H. Qi, F. Zheng, Comput. Mater. Sci. 44 (2008) 647–655.

    Article  Google Scholar 

  11. G.Q. Wang, X. Chen, Y.X. Li, China Foundry 16 (2019) 190–197.

    Article  Google Scholar 

  12. L.C. Yan, Y.P. Diao, K.W. Gao, Materials 13 (2020) 3266.

    Article  Google Scholar 

  13. T. Shiraiwa, Y. Miyazawa, M. Enoki, Mater. Trans. 60 (2018) 189–198.

    Article  Google Scholar 

  14. A. Agrawal, A. Choudhary, Int. J. Fatigue 113 (2018) 389–400.

    Article  Google Scholar 

  15. G.M. Sun, H. Liu, C.F. He, Y. Li, Z.B. Li, X.C. Liu, R.H. Zhang, H.N. Lu, J. Beijing Univ. Technol. 45 (2019) 119–125.

    Google Scholar 

  16. J. Gola, J. Webel, D. Britz, A. Guitar, T. Staudt, M. Winter, F. Mücklich, Comput. Mater. Sci. 160 (2019) 186–196.

    Article  Google Scholar 

  17. S. Datta, F. Pettersson, S. Ganguly, H. Saxén, N. Chakraborti, ISIJ Int. 47 (2007) 1195–1203.

    Article  Google Scholar 

  18. J. Xiong, S.Q. Shi, T.Y. Zhang, Mater. Des. 187 (2020) 108378.

    Article  Google Scholar 

  19. W. Yang, W.G. Li, Y.T. Zhao, B.K. Yan, W.B. Wang, Iron and Steel 53 (2018) No. 3, 44–49.

    Google Scholar 

  20. J. Xiong, T.Y. Zhang, S.Q. Shi, Sci. China Technol. Sci. 63 (2020) 1247–1255.

    Article  Google Scholar 

  21. J.M. Zhou, W.H. Yin, T. You, F.L. Wang, Y. Liu, C. Chen, Machine Tool & Hydraulics 49 (2021) No. 1, 175–179.

    Google Scholar 

  22. J.B. Zhang, Z.H. Deng, S.T. Wang, Journal of Frontiers of Computer Science and Technology 9 (2015) 1513–1522.

    Google Scholar 

  23. H.H. Chen, J.D. Xing, W. Li, Application manual of wear resistant materials, 2nd ed., Machine Press, Beijing, China, 2012.

    Google Scholar 

  24. S. Wikaisuksakul, Appl. Soft Comp. 24 (2014) 679–691.

    Article  Google Scholar 

  25. P. Kilham, C. Hartebrodt, G. Kändler, Forests 10 (2019) 20.

    Article  Google Scholar 

  26. Z.H. Zhou, Machine learning, Tsinghua University Press, Beijing, China, 2018.

    Google Scholar 

  27. Z. Li, K. Luo, Journal of Computer Applications 31 (2011) 1355–1358.

    Article  Google Scholar 

  28. Z.X. Zhao, Y.M. Gao, K.H. Zheng, Y.F. Li, S.Y. Zhao, Hot Working Technology 49 (2020) No. 2, 1–5.

    Google Scholar 

  29. J.P. Ning, K.H. Zheng, H.M. Zhou, H.Y. Wang, J. Long, Foundry 69 (2020) No. 2, 135–141.

    Google Scholar 

  30. H. Guo, Y. Liu, W. Li, Hot Working Technology 43 (2014) No. 10, 207–210.

    Google Scholar 

  31. Y.M. Dai, Y.Q. Ma, X.J. Zhang, L.T. Sun, P. Shi, Transactions of Materials and Heat Treatment 36 (2015) No. 1, 119–123.

    Google Scholar 

  32. B. Yu, X.Y. Li, J. Shi, Z.H. Li, H.F. Gao, J. Hu, Heat Treatment of Metals 40 (2015) No. 2, 176–179.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research and Development Project of China (2020YFB2008400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-zhong Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wei, Sz. A weighted fuzzy C-means clustering method for hardness prediction. J. Iron Steel Res. Int. 30, 176–191 (2023). https://doi.org/10.1007/s42243-022-00786-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00786-4

Keywords

Navigation