Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Radical C(sp3)–H functionalization and cross-coupling reactions

Abstract

C–H functionalization reactions are playing an increasing role in the preparation and modification of complex organic molecules, including pharmaceuticals, agrochemicals and polymer precursors. In recent years, there have been many reports of radical C–H functionalization reactions initiated by hydrogen-atom transfer and proceeding via open-shell radical intermediates. These methods introduce strategic opportunities to functionalize C(sp3)–H bonds. Examples include synthetically useful advances in radical-chain reactivity and biomimetic radical-rebound reactions. A growing number of reactions, however, have been found to proceed via radical relay, whereby hydrogen-atom transfer generates a diffusible radical that is functionalized by a separate reagent or catalyst. The latter methods provide the basis for versatile C–H cross-coupling methods with diverse partners. In this Review, we highlight recent examples of radical-chain and radical-rebound methods to provide context for a survey of emerging radical-relay methods, which greatly expand the scope and utility of intermolecular C(sp3)–H functionalization and cross coupling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms and components of radical-chain, radical-rebound and radical-relay reactions.
Fig. 2: Late-stage C(sp3)–H functionalization reactions via radical chain and radical rebound.
Fig. 3: Radical relay involving radical addition to trapping reagents.
Fig. 4: Timeline of representative Kharasch–Sosnovsky-type reactions.
Fig. 5: Summary of Cu/NFSI-catalysed radical-relay functionalization, functionalization/diversification and cross-coupling reactions of benzylic C(sp3)–H bonds.
Fig. 6: Catalytic cycle and radical functionalization mechanisms for Cu/NFSI-catalysed radical-relay reactions.
Fig. 7: Radical-relay C–H functionalization and cross-coupling reactions with catalysts other than copper.
Fig. 8: Photoredox C(sp3)–H functionalization/cross coupling via radical relay.
Fig. 9: Different methods for radical-relay C(sp3)–H functionalization and cross coupling using carbon-centred radicals access via photoredox methods.
Fig. 10: Nickel-catalysed arylation of C(sp3)–H bonds of inexpensive (co)solvents enabled by in situ generation of HAT reagents.
Fig. 11: Radical-relay reactions involving electrochemistry.

Similar content being viewed by others

References

  1. He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 117, 8754–8786 (2017).

    CAS  PubMed  Google Scholar 

  2. Jazzar, R., Hitce, J., Renaudat, A., Sofack-Kreutzer, J. & Baudoin, O. Functionalization of organic molecules by transition-metal-catalyzed C(sp3)–H activation. Chem. Eur. J. 16, 2654–2672 (2010).

    CAS  PubMed  Google Scholar 

  3. Saint-Denis, T. G., Zhu, R.-Y., Chen, G., Wu, Q.-F. & Yu, J.-Q. Enantioselective C(sp3)–H bond activation by chiral transition metal catalysts. Science 359, eaao4798 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. Gupta, A., Kumar, J., Rahaman, A., Singh, A. K. & Bhadra, S. Functionalization of C(sp3)–H bonds adjacent to heterocycles catalyzed by earth abundant transition metals. Tetrahedron 98, 132415 (2021).

    CAS  Google Scholar 

  5. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Doyle, M. P., Duffy, R., Ratnikov, M. & Zhou, L. Catalytic carbene insertion into C–H bonds. Chem. Rev. 110, 704–724 (2010).

    CAS  PubMed  Google Scholar 

  7. Roizen, J., Harvey, M. E. & Du Bois, J. Metal-catalyzed nitrogen-atom transfer methods for the oxidant of aliphatic C–H bonds. Acc. Chem. Res. 45, 911–922 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yi, H. et al. Recent advances in radical C–H activation/radical cross-coupling. Chem. Rev. 117, 9016–9085 (2017).

    CAS  PubMed  Google Scholar 

  9. Zhang, C., Li, Z.-L., Gu, Q.-S. & Liu, X.-Y. Catalytic enantioselective C(sp3)–H functionalization involving radical intermediates. Nat. Commun. 12, 475 (2021).

    PubMed  PubMed Central  Google Scholar 

  10. Studer, A. & Curran, D. P. Catalysis of radical reactions: a radical chemistry perspective. Angew. Chem. Int. Ed. 55, 58–102 (2016).

    CAS  Google Scholar 

  11. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).

    CAS  PubMed  Google Scholar 

  12. Sheldon, R. A. & Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes (Academic, 1981).

  13. Hermans, I., Spier, E. S., Neuenschwander, U., Turrà, N. & Baiker, A. Selective oxidation catalysis: opportunities and challenges. Top. Catal. 52, 1162–1174 (2009).

    CAS  Google Scholar 

  14. Quinn, R. K. et al. Site-selective aliphatic C–H chlorination using N-chloroamides enables a synthesis of chlorolissoclimide. J. Am. Chem. Soc. 138, 696–702 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmidt, V. A., Quinn, R. K., Brusoe, A. T. & Alexanian, E. J. Site-selective aliphatic C–H bromination using N-bromoamides and visible light. J. Am. Chem. Soc. 136, 14389–14392 (2014).

    CAS  PubMed  Google Scholar 

  16. Czaplyski, W. L., Na, C. G. & Alexanian, E. J. C–H xanthylation: a synthetic platform for alkane functionalization. J. Am. Chem. Soc. 138, 13854–13857 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tanwar, L., Börgel, J. & Ritter, T. Synthesis of benzylic alcohols by C–H oxidation. J. Am. Chem. Soc. 141, 17983–17988 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, X. & Groves, J. T. Beyond ferryl-mediated hydroxylation: 40 years of rebound mechanism and C–H activation. J. Biol. Inorg. Chem. 22, 185–207 (2017).

    CAS  PubMed  Google Scholar 

  19. Huang, X. & Groves, J. T. Taming azide radicals for catalytic C–H azidation. ACS Catal. 6, 751–759 (2016).

    CAS  Google Scholar 

  20. Clark, J. R., Feng, K., Sookezian, A. & White, M. C. Manganese-catalysed benzylic C(sp3)–H amination for late-stage functionalization. Nat. Chem. 10, 583–591 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    CAS  PubMed  Google Scholar 

  22. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    CAS  PubMed  Google Scholar 

  23. Guillemard, L., Kaplaneris, N., Ackermann, L. & Johansson, M. J. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat. Rev. Chem. 5, 522–545 (2021).

    CAS  Google Scholar 

  24. Wolff, M. E. Cyclization of N-halogenated amines (the Hofmann-Löffler reaction). Chem. Rev. 63, 55–64 (1963).

    CAS  Google Scholar 

  25. Statement, L. M., Nakafuku, K. M. & Nagib, D. A. Remote C–H functionalization via selective hydrogen atom transfer. Synthesis 50, 1569–1586 (2018).

    Google Scholar 

  26. Sarkar, S., Cheung, K. P. S. & Gevorgyan, V. C–H functionalization reactions enabled by hydrogen atom transfer to carbon-centred radicals. Chem. Sci. 11, 12974–12993 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nodwell, M. B. et al. Direct photocatalytic fluorination of benzylic C–H bonds with N-fluorobenzenesulfonimide. Chem. Commun. 51, 11783–11786 (2015).

    CAS  Google Scholar 

  28. Pitts, C. R., Ling, B., Woltornist, R., Liu, R. & Lectka, T. Triethylborane-initiated radical chain fluorination: a synthetic method derived from mechanistic insight. J. Org. Chem. 79, 8895–8899 (2014).

    CAS  PubMed  Google Scholar 

  29. Pitts, C. R. et al. Direct, catalytic monofluorination of sp3 C–H bonds: a radical-based mechanism with ionic selectivity. J. Am. Chem. Soc. 136, 9780–9791 (2014).

    CAS  PubMed  Google Scholar 

  30. Bloom, S. et al. Iron(II)-catalyzed benzylic fluorination. Org. Lett. 15, 1722–1724 (2013).

    CAS  PubMed  Google Scholar 

  31. Buss, J. A., Vasilopoulos, A., Golden, D. L. & Stahl, S. S. Copper-catalyzed functionalization of benzylic C–H bonds with N-fluorobenzenesulfonimide: switch from C–N to C–F bond formation promoted by a redox buffer and Brønsted base. Org. Lett. 22, 5749–5752 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bloom, S. et al. A polycomponent metal-catalyzed aliphatic, allylic, and benzylic fluorination. Angew. Chem. Int. Ed. 51, 10580–10583 (2012).

    CAS  Google Scholar 

  33. Xia, J.-B., Zhu, C. & Chen, C. Visible light-promoted metal-free C–H activation: diarylketone-catalyzed selective benzylic mono- and difluorination. J. Am. Chem. Soc. 135, 17494–17500 (2013).

    CAS  PubMed  Google Scholar 

  34. Halperin, S. D., Fan, H., Chang, S., Martin, R. E. & Britton, R. A convenient photocatalytic fluorination of unactivated C–H bonds. Angew. Chem. Int. Ed. 53, 4690–4693 (2014).

    CAS  Google Scholar 

  35. Bloom, S., McCann, M. & Lectka, T. Photocatalyzed benzylic fluorination: shedding “light” on the involvement of electron transfer. Org. Lett. 16, 6338–6341 (2014).

    CAS  PubMed  Google Scholar 

  36. Carestia, A. M., Ravelli, D. & Alexanian, E. J. Reagent-dictated site selectivity in intermolecular aliphatic C–H functionalizations using nitrogen-centred radicals. Chem. Sci. 9, 5360–5365 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. MacMillan, A. J. et al. Practical and selective sp3 C–H bond chlorination via aminium radicals. Angew. Chem. Int. Ed. 60, 7132–7139 (2021).

    Google Scholar 

  38. Xiang, M. et al. Visible light-catalyzed benzylic C–H bond chlorination by a combination of organic dye (Acr+-Mes) and N-chlorosuccinimide. J. Org. Chem. 85, 9080–9087 (2020).

    CAS  PubMed  Google Scholar 

  39. Ozawa, J. & Kanai, M. Silver-catalyzed C(sp3)–H chlorination. Org. Lett. 19, 1430–1433 (2017).

    CAS  PubMed  Google Scholar 

  40. Quiclet-Sire, B. & Zard, S. Z. The xanthate route to amines, anilines, and other nitrogen compounds. A brief account. Synlett 27, 680–701 (2016).

    CAS  Google Scholar 

  41. Huang, X. & Groves, J. T. Oxygen activation and radical transformations in heme proteins and metallophorphyrins. Chem. Rev. 118, 2491–2553 (2018).

    CAS  PubMed  Google Scholar 

  42. Leising, R. A., Norman, R. E. & Que, L. Jr. Alkane functionalization by non-porphyrin iron complexes: mechanistic insights. Inorg. Chem. 29, 2553–2555 (1990).

    CAS  Google Scholar 

  43. Chen, K., Costas, M. & Que, L. Jr. Spin state tuning of non-heme iron-catalyzed hydrocarbon oxidations: participation of FeIII–OOH and FeV=O intermediates. J. Chem. Soc. Dalton Trans. 5, 672–679 (2002).

    Google Scholar 

  44. Kim, J., Kim, C., Harrison, R. G., Wilkinson, E. C. & Que, L. Jr. Fe(TPA)-catalyzed alkane hydroxylation can be a metal-based oxidation. J. Mol. Catal. A Chem. 117, 83–89 (1997).

    CAS  Google Scholar 

  45. Chen, K. & Que, L. Jr Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an FeV=O active species. J. Am. Chem. Soc. 123, 6327–6337 (2001).

    CAS  PubMed  Google Scholar 

  46. Costas, M., Tipton, A. K., Chen, K., Jo, D.-H. & Que, L. Jr. Modeling Rieske dioxygenases: the first example of iron-catalyzed asymmetric cis-dihydroxylation of olefins. J. Am. Chem. Soc. 123, 6722–6723 (2001).

    CAS  PubMed  Google Scholar 

  47. Kim, C., Chen, K., Kim, J. & Que, L. Jr Stereospecific alkane hydroxylation with H2O2 catalyzed by an iron(II)–tris(2-pyridylmethyl)amine complex. J. Am. Chem. Soc. 119, 5964–5965 (1997).

    CAS  Google Scholar 

  48. Costas, M. & Que, L. Jr Ligand topology tuning of iron-catalyzed hydrocarbon oxidations. Angew. Chem. Int. Ed. 41, 2179–2181 (2002).

    CAS  Google Scholar 

  49. Chen, M. S. & White, M. C. A predictably selective aliphatic C–H oxidation reaction for complex molecule synthesis. Science 318, 783–787 (2007).

    CAS  PubMed  Google Scholar 

  50. St John, P., Guan, Y., Kim, Y., Kim, S. & Paton, R. S. Prediction of homolytic bond dissociation enthalpies for organic molecules at near chemical accuracy with sub-second computational cost. Nat. Commun. 11, 2328 (2020).

    Google Scholar 

  51. Chen, M. S. & White, M. C. Combined effects on selectivity in Fe-catalyzed methylene oxidation. Science 327, 566–571 (2010).

    CAS  PubMed  Google Scholar 

  52. Gormisky, P. E. & White, M. C. Catalyst-controlled aliphatic C–H oxidations with a predictive model for site-selectivity. J. Am. Chem. Soc. 135, 14052–14055 (2013).

    CAS  PubMed  Google Scholar 

  53. Howell, J. M., Feng, K., Clark, J. R., Trzepkowski, L. J. & White, M. C. Remote oxidation of aliphatic C–H bonds in nitrogen-containing molecules. J. Am. Chem. Soc. 137, 14590–14593 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Osberger, T. J., Rogness, D. C., Kohrt, J. T., Stepan, A. F. & White, M. C. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis. Nature 537, 214–219 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dantignana, V. et al. Chemoselective aliphatic C–H bond oxidation enabled by polarity reversal. ACS Cent. Sci. 3, 1350–1358 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Borrell, M., Gil-Caballero, S., Bietti, M. & Costas, M. Site-selective and product chemoselective aliphatic C–H bond hydroxylation of polyhydroxylated substrates. ACS Catal. 10, 4702–4709 (2020).

    CAS  Google Scholar 

  57. Zhao, J., Nanjo, T., de Luca, E. C. & White, M. C. Chemoselective methylene oxidation in aromatic molecules. Nat. Chem. 11, 213–221 (2019).

    CAS  PubMed  Google Scholar 

  58. Milan, M., Bietti, M. & Costas, M. Highly enantioselective oxidation of nonactivated aliphatic C–H bonds with hydrogen peroxide catalyzed by manganese complexes. ACS Cent. Sci. 3, 196–204 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. White, M. C., Doyle, A. G. & Jacobsen, E. N. A synthetically useful, self-assembling MMO mimic system for catalytic alkene epoxidation with aqueous H2O2. J. Am. Chem. Soc. 123, 7194–7195 (2001).

    CAS  PubMed  Google Scholar 

  60. Oloo, W. N. & Que, L. Jr Bioinspired nonheme iron catalysts for C–H and C=C bond oxidation: insights into the nature of the metal-based oxidants. Acc. Chem. Res. 48, 2612–2621 (2015).

    CAS  PubMed  Google Scholar 

  61. Kal, S., Xu, S. & Que, L. Jr Bio-inspired nonheme iron oxidation catalysis: involvement of oxoiron(V) oxidants in cleaving strong C–H bonds. Angew. Chem. Int. Ed. 59, 7332–7349 (2020).

    CAS  Google Scholar 

  62. Liu, W. & Groves, J. T. Manganese catalyzed C–H halogenation. Acc. Chem. Res. 48, 1727–1735 (2015).

    CAS  PubMed  Google Scholar 

  63. Liu, W. et al. Oxidative aliphatic C–H fluorination with fluoride ion catalyzed by a manganese porphyrin. Science 337, 1322–1325 (2012).

    CAS  PubMed  Google Scholar 

  64. Li, G., Dilger, A. K., Cheng, P. T., Ewing, W. R. & Groves, J. T. Selective C–H halogenation with a highly fluorinated manganese porphyrin. Angew. Chem. Int. Ed. 57, 1251–1255 (2018).

    CAS  Google Scholar 

  65. Liu, W. et al. Site-selective 18F fluorination of unactivated C–H bonds mediated by a manganese porphyrin. Chem. Sci. 9, 1168–1172 (2018).

    CAS  PubMed  Google Scholar 

  66. Huang, X., Bergsten, T. M. & Groves, J. T. Manganese-catalyzed late-stage aliphatic C–H azidation. J. Am. Chem. Soc. 137, 5300–5303 (2015).

    CAS  PubMed  Google Scholar 

  67. Huang, X. et al. Alkyl isocyanates via manganese-catalyzed C–H activation for the preparation of substituted ureas. J. Am. Chem. Soc. 139, 15407–15413 (2017).

    CAS  PubMed  Google Scholar 

  68. Ishii, Y., Sakaguchi, S. & Iwahama, T. Innovation of hydrocarbon oxidation with molecular oxygen and related reactions. Adv. Synth. Catal. 343, 393–427 (2001).

    CAS  Google Scholar 

  69. Sterckx, H., Morel, B. & Maes, B. U. W. Catalytic aerobic oxidation of C(sp3)–H bonds. Angew. Chem. Int. Ed. 58, 7946–7970 (2019).

    CAS  Google Scholar 

  70. Ishii, Y., Iwahama, T., Sakaguchi, S., Nakayama, K. & Nishiyama, Y. Alkane oxidation with molecular oxygen using a new efficient catalytic system: N-hydroxyphthalimide (NHPI) combined with Co(acac)n (n = 2 or 3). J. Org. Chem. 61, 4520–4526 (1996).

    CAS  PubMed  Google Scholar 

  71. Hruszkewycz, D. P., Miles, K. C., Thiel, O. R. & Stahl, S. S. Co/NHPI-mediated oxygenation of benzylic C–H bonds in pharmaceutically relevant molecules. Chem. Sci. 8, 1282–1287 (2017).

    CAS  PubMed  Google Scholar 

  72. Cooper, J. C., Luo, C., Kameyama, R. & Van Humbeck, J. F. Combined iron/hydroxytriazole dual catalytic system for site selective oxidation adjacent to azaheterocycles. J. Am. Chem. Soc. 140, 1243–1246 (2018).

    CAS  PubMed  Google Scholar 

  73. Gaster, E., Kozuch, S. & Pappo, D. Selective aerobic oxidation of methylarenes to benzaldehydes catalyzed by N-hydroxyphthalimide and cobalt(II) acetate in hexafluoropropan-2-ol. Angew. Chem. Int. Ed. 56, 5912–5915 (2017).

    CAS  Google Scholar 

  74. Schultz, D. M. et al. Oxyfunctionalization of the remote C–H bonds of aliphatic amines by decatungstate photocatalysis. Angew. Chem. Int. Ed. 56, 15274–15278 (2017).

    CAS  Google Scholar 

  75. Wu, W. et al. (nBu4N)4W10O32-catalyzed selective oxygenation of cyclohexane by molecular oxygen under visible light irradiation. Appl. Catal. B Environ. 164, 113–119 (2015).

    CAS  Google Scholar 

  76. Laudadio, G. et al. Selective C(sp3)–H aerobic oxidation enabled by decatungstate photocatalysis in flow. Angew. Chem. Int. Ed. 57, 4078–4082 (2018).

    CAS  Google Scholar 

  77. Lee, J. M., Park, J., Cho, S. H. & Chang, S. Cu-facilitated C–O bond formation using N-hydroxyphthalimide: efficient and selective functionalization of benzyl and allylic C–H bonds. J. Am. Chem. Soc. 130, 7824–7825 (2008).

    CAS  PubMed  Google Scholar 

  78. Guo, Z., Jin, C., Zhou, J. & Su, W. Copper(II)-catalyzed cross dehydrogenative coupling reaction of N-hydroxyphthalimide with alkanes and ethers via unactivated C(sp3)–H activation at room temperature. RSC Adv. 6, 79016–79019 (2016).

    CAS  Google Scholar 

  79. Zhang, X., Yang, H. & Tang, P. Transition-metal-free oxidative aliphatic C–H azidation. Org. Lett. 17, 5828–5831 (2015).

    CAS  PubMed  Google Scholar 

  80. Kim, K., Lee, S. & Hong, S. H. Direct C(sp3)–H cyanation enabled by highly active decatungstate photocatalyst. Org. Lett. 23, 5501–5505 (2021).

    CAS  PubMed  Google Scholar 

  81. Sarver, P. J., Bissonnette, N. B. & MacMillan, D. W. C. Decatungstate-catalyzed C(sp3)–H sulfinylation: rapid access to diverse organosulfur functionality. J. Am. Chem. Soc. 143, 9737–9743 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Schirmer, T. E., Rolka, A. B., Karl, T. A., Holzhausen, F. & König, B. Photocatalytic C–H trifluoromethylthiolation by the decatungstate anion. Org. Lett. 23, 5729–5733 (2021).

    CAS  PubMed  Google Scholar 

  83. Capaldo, L. & Ravelli, D. Decatungstate as direct hydrogen atom transfer photocatalyst for SOMOphilic alkynylation. Org. Lett. 23, 2243–2247 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mao, R., Bera, S., Turla, A. C. & Hu, X. Copper-catalyzed intermolecular functionalization of unactivated C(sp3)–H bonds and aliphatic carboxylic acids. J. Am. Chem. Soc. 143, 14667–14675 (2021).

    CAS  PubMed  Google Scholar 

  85. Bentley, K. W., Dummit, K. A. & Van Humbeck, J. F. A highly site-selective radical sp3 C–H amination of azaheterocycles. Chem. Sci. 9, 6440–6445 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hu, A., Guo, J.-J., Pan, H. & Zuo, Z. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. Science 361, 668–672 (2018).

    CAS  PubMed  Google Scholar 

  87. An, Q. et al. Cerium-catalyzed C–H functionalizations of alkanes utilizing alcohols as hydrogen atom transfer agents. J. Am. Chem. Soc. 142, 6216–6226 (2020).

    CAS  PubMed  Google Scholar 

  88. Yang, Q. et al. Photocatalytic C–H activation and the subtle role of chlorine radical complexation in reactivity. Science 372, 847–852 (2021).

    CAS  PubMed  Google Scholar 

  89. Ryu, I. et al. Efficient C–H/C–N and C–H/C–CO–N conversion via decatungstate-photoinduced alkylation of diisopropyl azodicarboxylate. Org. Lett. 15, 2554–2557 (2013).

    CAS  PubMed  Google Scholar 

  90. Bonassi, F., Ravelli, D., Protti, S. & Fagnoni, M. Decatungstate photocatalyzed acylations and alkylations in flow via hydrogen atom transfer. Adv. Synth. Catal. 357, 3687–3695 (2015).

    CAS  Google Scholar 

  91. Wan, T. et al. Accelerated and scalable C(sp3)–H amination via decatungstate photocatalysis using a flow photoreactor equipped with high-intensity LEDs. ACS Cent. Sci. 8, 51–56 (2022).

    CAS  PubMed  Google Scholar 

  92. Giese, B. Formation of CC bonds by addition of free radicals to alkenes. Angew. Chem. Int. Ed. Engl. 22, 753–764 (1983).

    Google Scholar 

  93. Crespi, S. & Fagnoni, M. Generation of alkyl radicals: from the tyranny of tin to the photon democracy. Chem. Rev. 120, 9790–9833 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kanegusuku, A. L. G. & Roizen, J. L. Recent advances in photoredox-mediated radical conjugate addition reactions: an expanding toolkit for the Giese reaction. Angew. Chem. Int. Ed. 60, 2–36 (2021).

    Google Scholar 

  95. Treacy, S. M. & Rovis, T. Copper-catalyzed C(sp3)–H bond alkylation via photoinduced ligand-to-metal charge transfer. J. Am. Chem. Soc. 143, 2729–2735 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kang, Y. C., Treacy, S. M. & Rovis, T. Iron-catalyzed photoinduced LMCT: a 1° C–H abstraction enables skeletal rearrangements and C(sp3)–H alkylation. ACS Catal. 11, 7442–7449 (2021).

    CAS  PubMed  Google Scholar 

  97. Angioni, S. et al. Tetrabutylammonium decatungstate (chemo)selective photocatalyzed, radical C–H functionalization in amides. Adv. Synth. Catal. 350, 2209–2214 (2008).

    CAS  Google Scholar 

  98. Yamada, K. et al. Photocatalyzed site-selective C–H to C–C conversion of aliphatic nitriles. Org. Lett. 17, 1292–1295 (2015).

    CAS  PubMed  Google Scholar 

  99. Fukuyama, T. et al. Photocatalyzed site-selective C(sp3)–H functionalization of alkylpyridines at non-benzylic positions. Org. Lett. 19, 6436–6439 (2017).

    CAS  PubMed  Google Scholar 

  100. Fukuyama, T., Nishikawa, T. & Ryu, I. Site-selective C(sp3)–H functionalization of fluorinated alkanes driven by polar effects using a tungstate photocatalyst. Eur. J. Org. Chem. 2020, 1424–1428 (2020).

    CAS  Google Scholar 

  101. Laudadio, G. et al. C(sp3)–H functionalizations of light hydrocarbon using decatungstate photocatalysis in flow. Science 369, 92–96 (2020).

    CAS  PubMed  Google Scholar 

  102. Roberts, B. P. Polarity-reversal catalysis of hydrogen-atom abstraction reactions: concepts and applications in organic chemistry. Chem. Soc. Rev. 28, 25–35 (1999).

    CAS  Google Scholar 

  103. Lei, G., Xu, M., Chang, R., Funes-Ardoiz, I. & Ye, J. Hydroalkylation of unactivated olefins via visible-light-driven dual hydrogen atom transfer catalysis. J. Am. Chem. Soc. 143, 11251–11261 (2021).

    CAS  PubMed  Google Scholar 

  104. Minisci, F., Bernardi, R., Bertini, F., Galli, R. & Perchinummo, M. Nucleophilic character of alkyl radicals — VI: a new convenient selective alkylation of heteroaromatic bases. Tetrahedron 27, 3575–3579 (1971).

    CAS  Google Scholar 

  105. Proctor, R. S. J. & Phipps, R. J. Recent advances in Minisci-type reactions. Angew. Chem. Int. Ed. 58, 13666–13699 (2019).

    CAS  Google Scholar 

  106. Leonov, D. & Elad, D. Ultraviolet- and γ-ray-induced reactions of nucleic acid constituents. Reactions of purines with ethers and dioxolane. J. Org. Chem. 39, 1470–1473 (1974).

    CAS  Google Scholar 

  107. Deng, G., Ueda, K., Yanagisawa, S., Itami, K. & Li, C.-J. Coupling of nitrogen heteroaromatics and alkanes without transition metals: a new oxidative cross-coupling at C–H/C–H bonds. Chem. Eur. J. 15, 333–337 (2009).

    CAS  PubMed  Google Scholar 

  108. Xia, R., Niu, H.-Y., Qu, G.-R. & Guo, H.-M. CuI controlled C–C and C–N bond formation of heteroaromatics through C(sp3)–H activation. Org. Lett. 14, 5546–5549 (2012).

    CAS  PubMed  Google Scholar 

  109. Shao, X., Wu, X., Wu, S. & Zhu, C. Metal-free radical-mediated C(sp3)–H heteroarylation of alkanes. Org. Lett. 22, 7450–7454 (2020).

    CAS  PubMed  Google Scholar 

  110. Tzirakis, M. D., Lykakis, I. N. & Orfanopoulos, M. Decatungstate as an efficient photocatalyst in organic chemistry. Chem. Soc. Rev. 38, 2609–2621 (2009).

    CAS  PubMed  Google Scholar 

  111. Quattrini, M. C. et al. Versatile cross-dehydrogenative coupling of heteroaromatics and hydrogen donors via decatungstate photocatalysis. Chem. Commun. 53, 2335–2338 (2017).

    CAS  Google Scholar 

  112. De Waele, V., Poizat, O., Fagnoni, M., Bagno, A. & Ravelli, D. Unraveling the key features of the reactive state of decatungstate anion in hydrogen atom transfer (HAT) photocatalysis. ACS Catal. 6, 7174–7182 (2016).

    CAS  Google Scholar 

  113. Ravelli, D., Fagnoni, M., Fukuyama, T., Nishikawa, T. & Ryu, I. Site-selective C–H functionalization by decatungstate anion photocatalysis: synergistic control by polar and steric effects expands the reaction scope. ACS Catal. 8, 701–703 (2018).

    CAS  Google Scholar 

  114. Li, G.-X., Hu, X., He, G. & Chen, G. Photoredox-mediated Minisci-type alkylation of N-heteroarenes with alkanes with high methylene selectivity. ACS Catal. 8, 11847–11853 (2018).

    CAS  Google Scholar 

  115. Lee, W., Jung, S., Kim, M. & Hong, S. Site-selective direct C–H pyridylation of unactivated alkanes by triplet excited anthraquinone. J. Am. Chem. Soc. 143, 3003–3012 (2021).

    CAS  PubMed  Google Scholar 

  116. Shu, C., Noble, A. & Aggarwal, V. K. Metal-free photoinduced C(sp3)–H borylation of alkanes. Nature 586, 714–719 (2020).

    CAS  PubMed  Google Scholar 

  117. Kharasch, M. S. & Sosnovsky, G. The reactions of t-butyl perbenzoate and olefins–a stereospecific reaction. J. Am. Chem. Soc. 80, 756 (1958).

    CAS  Google Scholar 

  118. Kharasch, M. & Fono, A. Radical substitution reactions. J. Org. Chem. 23, 325–326 (1958).

    CAS  Google Scholar 

  119. Kochi, J. K. Copper salt-catalyzed reaction of butenes with peresters. J. Am. Chem. Soc. 84, 774–784 (1962).

    CAS  Google Scholar 

  120. Muzart, J. Enantioselective copper-catalyzed allylic acetoxylation of cyclohexene. J. Mol. Catal. 64, 381–384 (1991).

    CAS  Google Scholar 

  121. Andrus, M. B., Argade, A. B., Chen, X. & Pamment, M. G. The asymmetric Kharasch reaction. Catalytic enantioselective allylic acyloxylation of olefins with chiral copper(I) complexes and tert-butyl perbenzoate. Tetrahedron Lett. 36, 2945–2948 (1995).

    CAS  Google Scholar 

  122. Gokhale, A. S., Minidis, A. B. E. & Pfaltz, A. Enantioselective allylic oxidation catalyzed by chiral bisoxazoline-copper complexes. Tetrahedron Lett. 36, 1831–1834 (1995).

    CAS  Google Scholar 

  123. Kawasaki, K., Tsumura, S. & Katsuki, T. Enantioselective allylic oxidation using biomimetic tris(oxazolines)-copper(II) complex. Synlett 1995, 1245–1246 (1995).

    Google Scholar 

  124. Andrus, M. B. & Zhou, Z. Highly enantioselective copper–bisoxazoline-catalyzed allylic oxidation of cyclic olefins with tert-butyl p-nitroperbenzoate. J. Am. Chem. Soc. 124, 8806–8807 (2002).

    CAS  PubMed  Google Scholar 

  125. Corey, E. J. & Lee, J. Enantioselective total synthesis of oleanolic acid, erythrodiol, β-amyrin, and other pentacyclic triterpenes from a common intermediate. J. Am. Chem. Soc. 115, 8873–8874 (1993).

    CAS  Google Scholar 

  126. Neukirch, H. et al. Improved anti-inflammatory activity of three new terpenoids derived, by systematic chemical modifications, from the abundant triterpenes of the flowery plant calendula officinalis. Chem. Biodivers. 2, 657–671 (2005).

    CAS  PubMed  Google Scholar 

  127. García-Cabeza, A. L. et al. Allylic oxidation of alkenes catalyzed by a copper–aluminum mixed oxide. Org. Lett. 16, 1598–1601 (2014).

    PubMed  Google Scholar 

  128. García-Cabeza, A. L. et al. Optimization by response surface methodology (RSM) of the Kharasch–Sosnovsky oxidation of valencene. Org. Process Res. Dev. 19, 1662–1666 (2015).

    Google Scholar 

  129. Gephart, R. T. et al. Reaction of CuI with dialkyl peroxides: CuII-alkoxides, alkoxy radicals, and catalytic C–H etherification. J. Am. Chem. Soc. 134, 17350–17353 (2012).

    CAS  PubMed  Google Scholar 

  130. Tran, B. L., Driess, M. & Hartwig, J. F. Copper-catalyzed oxidative dehydrogenative carboxylation of unactivated alkanes to allylic esters via alkenes. J. Am. Chem. Soc. 136, 17292–17301 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kohmura, Y., Kawasaki, K. & Katsuki, T. Benzylic and allylic amination. Synlett 12, 1456–1458 (1997).

    Google Scholar 

  132. Pelletier, G. & Powell, D. A. Copper-catalyzed amidation of allylic and benzylic C–H bonds. Org. Lett. 8, 6031–6034 (2006).

    CAS  PubMed  Google Scholar 

  133. Powell, D. A. & Fan, H. Copper-catalyzed amination of primary benzylic C–H bonds with primary and secondary sulfonamides. J. Org. Chem. 75, 2726–2729 (2010).

    CAS  PubMed  Google Scholar 

  134. Wiese, S. et al. Catalytic C–H amination with unactivated amines through copper(II) amides. Angew. Chem. Int. Ed. 49, 8850–8855 (2010).

    CAS  Google Scholar 

  135. Tran, B. L., Li, B., Driess, M. & Hartwig, J. F. Copper-catalyzed intermolecular amidation and imidation of unactivated alkanes. J. Am. Chem. Soc. 136, 2555–2563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Zheng, Y.-W., Narobe, R., Donabauer, K., Yabukov, S. & König, B. Copper(II)-photocatalyzed N–H alkylation with alkanes. ACS Catal. 10, 8582–8589 (2020).

    CAS  Google Scholar 

  137. Borduas, N. & Powell, D. A. Copper-catalyzed oxidative coupling of benzylic C–H bonds with 1,3-dicarbonyl compounds. J. Org. Chem. 73, 7822–7825 (2008).

    CAS  PubMed  Google Scholar 

  138. Song, Z.-Q. et al. Photoredox oxo-C(sp3)–H bond functionalization via in situ Cu(I)-acetylide catalysis. Org. Lett. 22, 832–836 (2020).

    CAS  PubMed  Google Scholar 

  139. Vasilopoulos, A., Zultanski, S. L. & Stahl, S. S. Feedstocks to pharmacophores: Cu-catalyzed oxidative arylation of inexpensive alkylarenes enabling direct access to diarylalkanes. J. Am. Chem. Soc. 139, 7705–7708 (2017).

    CAS  PubMed  Google Scholar 

  140. Xie, W., Heo, J., Kim, D. & Chang, S. Copper-catalyzed direct C–H alkylation of polyfluoroarenes by using hydrocarbons as an alkylating source. J. Am. Chem. Soc. 142, 7487–7496 (2020).

    CAS  PubMed  Google Scholar 

  141. Ni, Z. et al. Highly regioselective copper-catalyzed benzylic C–H amination by N-fluorobenzenesulfonimide. Angew. Chem. Int. Ed. 51, 1244–1247 (2012).

    CAS  Google Scholar 

  142. Zhang, W. et al. Enantioselective cyanation of benzylic C–H bonds via copper-catalyzed radical relay. Science 353, 1014–1018 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Xiao, H. et al. Copper-catalyzed late-stage benzylic C(sp3)–H trifluoromethylation. Chem 5, 940–949 (2019).

    CAS  Google Scholar 

  144. Suh, S.-E. et al. Site-selective copper-catalyzed azidation of benzylic C–H bonds. J. Am. Chem. Soc. 142, 11388–11393 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Sharma, A. & Hartwig, J. F. Metal-catalyzed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature 517, 600–604 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Margrey, K. A., Czaplyski, W. L., Nicewicz, D. A. & Alexanian, E. J. A general strategy for aliphatic C–H functionalization enabled by organic photoredox catalysis. J. Am. Chem. Soc. 140, 4213–4217 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu, S. et al. Copper-catalyzed oxidative benzylic C(sp3)–H amination: direct synthesis of benzylic carbamates. Chem. Commun. 56, 13013–13016 (2020).

    CAS  Google Scholar 

  148. Wang, A., DeOliveira, C. C. & Emmert, M. Non-directed, copper catalyzed benzylic C–H amination avoiding substrate excess. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv.8792243.v2 (2019).

    Article  Google Scholar 

  149. Jiang, C., Chen, P. & Liu, G. Copper-catalyzed benzylic C–H bond thiocyanation: enabling late-stage diversifications. CCS Chem. 2, 1884–1893 (2020).

    Google Scholar 

  150. Suh, S.-E., Nkulu, L. E., Lin, S., Krska, S. W. & Stahl, S. S. Benzylic C–H isocyanation/amine coupling sequence enabling high-throughput synthesis of pharmaceutically relevant ureas. Chem. Sci. 12, 10380–10387 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Vasilopoulos, A., Golden, D. L., Buss, J. A. & Stahl, S. S. Copper-catalyzed C–H fluorination/functionalization sequence enabling benzylic C–H cross coupling with diverse nucleophiles. Org. Lett. 22, 5753–5757 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Champagne, P. A. et al. Enabling nucleophilic substitution reactions of activated alkyl fluorides through hydrogen bonding. Org. Lett. 15, 2210–2213 (2013).

    CAS  PubMed  Google Scholar 

  153. Champagne, P. A., Benhassine, Y., Desroches, J. & Paquin, J.-P. Friedel–Crafts reaction of benzyl fluorides: selective activation of C–F bonds as enabled by hydrogen bonding. Angew. Chem. Int. Ed. 53, 13835–13839 (2014).

    CAS  Google Scholar 

  154. Hemelaere, R., Champagne, P. A., Desroches, J. & Paquin, J.-F. Faster initiation in the Friedel–Crafts reaction of benzyl fluorides using trifluoroacetic acid as activator. J. Fluorine Chem. 190, 1–6 (2016).

    CAS  Google Scholar 

  155. Hamel, J.-D. & Paquin, J.-F. Activation of C–F bonds α to C–C multiple bonds. Chem. Commun. 54, 10224–10239 (2018).

    CAS  Google Scholar 

  156. Lopez, M. A., Buss, J. A. & Stahl, S. S. Cu-catalyzed site-selective benzylic chlorination enabling net C–H coupling with oxidatively sensitive nucleophiles. Org. Lett. 24, 597–601 (2022).

    CAS  PubMed  Google Scholar 

  157. Jin, J. et al. Copper(I)-catalyzed site-selective C(sp3)–H bond chlorination of ketones, (E)-enones and alkylbenzenes by dichloramine-T. Nat. Commun. 12, 4065 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Fawcett, A., Keller, M. J., Herrera, Z. & Hartwig, J. F. Site selective chlorination of C(sp3)–H bonds suitable for late-stage functionalization. Angew. Chem. Int. Ed. 60, 8276–8283 (2021).

    CAS  Google Scholar 

  159. Li, J. et al. Site-specific allylic C–H bond functionalization with a copper-bound N-centered radical. Nature 574, 516–521 (2019).

    CAS  PubMed  Google Scholar 

  160. Zhou, J., Jin, C., Li, X. & Su, W. Copper-catalyzed oxidative esterification of unactivated C(sp3)–H bonds with carboxylic acids via cross dehydrogenative coupling. RCS Adv. 5, 7232–7236 (2015).

    CAS  Google Scholar 

  161. Hu, H. et al. Copper-catalyzed benzylic C–H coupling with alcohols via radical relay enabled by redox buffering. Nat. Catal. 3, 358–367 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Chen, S.-J., Golden, D. L., Krska, S. W. & Stahl, S. S. Copper-catalyzed cross-coupling of benzylic C–H bonds and azoles with controlled N-site selectivity. J. Am. Chem. Soc. 143, 14438–14444 (2021).

    CAS  PubMed  Google Scholar 

  163. Ivanova, A. E. et al. Ambident polyfluoroalkyl-substituted pyrazoles in the methylation reactions. J. Fluorine Chem. 195, 47–56 (2017).

    CAS  Google Scholar 

  164. Huang, A. et al. Regioselective synthesis, NMR, and crystallographic analysis of N1-substituted pyrazoles. J. Org. Chem. 82, 8864–8872 (2017).

    CAS  PubMed  Google Scholar 

  165. Zhang, W., Chen, P. & Liu, G. Copper-catalyzed arylation of benzylic C–H bonds with alkylarenes as the limiting reagents. J. Am. Chem. Soc. 139, 7709–7712 (2017).

    CAS  PubMed  Google Scholar 

  166. Zhang, W., Wu, L., Chen, P. & Liu, G. Enantioselective arylation of benzylic C–H bonds by copper-catalyzed radical relay. Angew. Chem. Int. Ed. 58, 6425–6429 (2019).

    CAS  Google Scholar 

  167. Fu, L., Zhang, Z., Chen, P., Lin, Z. & Liu, G. Enantioselective copper-catalyzed alkynylation of benzylic C–H bonds via radical relay. J. Am. Chem. Soc. 142, 12493–12500 (2020).

    CAS  PubMed  Google Scholar 

  168. Li, Z., Cao, L. & Li, C.-J. FeCl2-catalyzed selective C–C bond formation by oxidative activation of a benzylic C–H bond. Angew. Chem. Int. Ed. 46, 6505–6507 (2007).

    CAS  Google Scholar 

  169. Xia, Q., Chen, W. & Qiu, H. Direct C–N coupling of imidazoles and benzylic compounds via iron-catalyzed oxidative activation of C–H bonds. J. Org. Chem. 76, 7577–7582 (2011).

    CAS  PubMed  Google Scholar 

  170. Kumar, J., Suresh, E. & Bhadra, S. Catalytic direct α-amination of arylacetic acid synthons with anilines. J. Org. Chem. 85, 13363–13374 (2020).

    CAS  PubMed  Google Scholar 

  171. Karimov, R. R., Sharma, A. & Hartwig, J. F. Late stage azidation of complex molecules. ACS Cent. Sci. 2, 715–724 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Ye, Y.-H., Zhang, J., Wang, G., Chen, S.-Y. & Yu, X.-Q. Cobalt-catalyzed benzylic C–H amination via dehydrogenative-coupling reaction. Tetrahedron 67, 4649–4654 (2011).

    CAS  Google Scholar 

  173. Tang, S., Wang, P., Li, H. & Lei, A. Multimetallic catalysed radical oxidative C(sp3)–H /C(sp)–H cross-coupling between unactivated alkanes and terminal alkynes. Nat. Commun. 7, 11676 (2016).

    PubMed  PubMed Central  Google Scholar 

  174. Liu, D., Liu, C., Li, H. & Lei, A. Direct functionalization of tetrahydrofuran and 1,4-dioxane: nickel-catalyzed oxidative C(sp3)–H arylation. Angew. Chem. Int. Ed. 52, 4453–4456 (2013).

    CAS  Google Scholar 

  175. Liu, D. et al. Nickel-catalyzed selective oxidative radical cross-coupling: an effective strategy for inert Csp3–H functionalization. Org. Lett. 17, 998–1001 (2015).

    CAS  PubMed  Google Scholar 

  176. Vasilopoulos, A., Krska, S. W. & Stahl, S. S. C(sp3)–H methylation enabled by peroxide photosensitization and Ni-mediated radical coupling. Science 372, 398–403 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Schönherr, H. & Cernak, T. Profound methyl effects in drug discovery and a call for new C–H methylation reactions. Angew. Chem. Int. Ed. 52, 12256–12267 (2013).

    Google Scholar 

  178. Xu, P., Guo, S., Wang, L. & Tang, P. Silver-catalyzed oxidative activation of benzylic C–H bonds for the synthesis of difluoromethylated arenes. Angew. Chem. Int. Ed. 126, 6065–6068 (2014).

    Google Scholar 

  179. Yang, H. et al. Silver-promoted oxidative benzylic C–H trifluoromethoxylation. Angew. Chem. Int. Ed. 57, 13266–13270 (2018).

    CAS  Google Scholar 

  180. Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Soc. Rev. 116, 10035–10074 (2016).

    CAS  Google Scholar 

  181. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    CAS  Google Scholar 

  182. Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Levin, M. D., Kim, S. & Toste, F. D. Photoredox catalysis unlocks single-electron elementary steps in transition metal catalyzed cross-coupling. ACS Cent. Sci. 2, 293–301 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Matsui, J. K., Lang, S. B., Heitz, D. R. & Molander, G. A. Photoredox-mediated routes to radicals: the value of catalytic radical generation in synthetic methods development. ACS Catal. 7, 2563–2575 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. McAtee, R. C., McClain, E. J. & Stephenson, C. R. J. Illuminating photoredox catalysis. Trends Chem. 1, 111–125 (2019).

    CAS  Google Scholar 

  186. Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).

    CAS  PubMed  Google Scholar 

  187. Capaldo, L., Ravelli, D. & Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C–H bonds elaboration. Chem. Rev. 122, 1875–1924 (2022).

    CAS  PubMed  Google Scholar 

  188. Leibler, I. N.-M., Tekle-Smith, M. A. & Doyle, A. A general strategy for C(sp3)–H functionalization with nucleophiles using methyl radical as a hydrogen atom abstractor. Nat. Commun. 12, 6950 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhang, Y. et al. A photoredox-catalyzed approach for formal hydride abstraction to enable a general Csp3–H fluorination with HF. Chem Catalysis 2, 292–308 (2022).

    Google Scholar 

  190. Li, G.-X. et al. A unified photoredox-catalysis strategy for C(sp3)–H hydroxylation and amidation using hypervalent iodine. Chem. Sci. 8, 7180–7185 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Michaudel, Q., Thevenet, D. & Baran, P. S. Intermolecular Ritter-type C–H amination of unactivated sp3 carbons. J. Am. Chem. Soc. 134, 2547–2550 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Kiyokawa, K., Takemoto, K. & Minakata, S. Ritter-type amination of C–H bonds at tertiary carbon centers using iodic acid as an oxidant. Chem. Commun. 52, 13082–13085 (2016).

    CAS  Google Scholar 

  193. Maeda, B., Sakakibara, Y., Murakami, K. & Itami, K. Photoredox-catalyzed benzylic esterification via radical-polar crossover. Org. Lett. 23, 5113–5117 (2021).

    CAS  Google Scholar 

  194. Meng, Q.-Y., Schirmer, T. E., Berger, A. L., Donabauer, K. & König, B. Photocarboxylation of benzylic C–H bonds. J. Am. Chem. Soc. 141, 11393–11397 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Berger, A. L., Donabauer, K. & König, B. Photocatalytic carbanion generation from C–H bonds–reductant free Barbier/Grignard-type reactions. Chem. Sci. 10, 10991–10996 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Bosnidou, A. E. & Muñiz, K. Intermolecular radical C(sp3)–H amination under iodine catalysis. Angew. Chem. Int. Ed. 58, 7485–7489 (2019).

    CAS  Google Scholar 

  197. Romine, A. M. et al. Easy access to the copper(III) anion [Cu(CF3)4]. Angew. Chem. Int. Ed. 54, 2745–2749 (2015).

    CAS  Google Scholar 

  198. Guo, S., AbuSalim, D. I. & Cook, S. P. Aqueous benzylic C–H trifluoromethylation for late-stage functionalization. J. Am. Chem. Soc. 140, 12378–12382 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. He, J., Nguyen, T. N., Guo, S. & Cook, S. P. Csp3–H trifluoromethylation of unactivated aliphatic systems. Org. Lett. 23, 702–705 (2021).

    CAS  PubMed  Google Scholar 

  200. Choi, G., Lee, G. S., Park, B., Kim, D. & Hong, S. H. Direct C(sp3)–H trifluoromethylation of unactivated alkanes enabled by multifunctional trifluoromethyl copper complexes. Angew. Chem. Int. Ed. 60, 5467–5474 (2021).

    CAS  Google Scholar 

  201. Sarver, P. J. et al. The merger of decatungstate and copper catalysis to enable aliphatic C(sp3)–H trifluoromethylation. Nat. Chem. 12, 459–467 (2020).

    CAS  PubMed  Google Scholar 

  202. Shaw, M. H., Shurtleff, V. W., Terrett, J. A., Cuthbertson, J. D. & MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. Science 352, 1304–1308 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Le, C., Liang, Y., Evans, R. W., Li, X. & MacMillan, D. W. C. Selective sp3 C–H alkylation via polarity-match-based cross-coupling. Nature 547, 79–83 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Zhang, X. & MacMillan, D. W. C. Direct aldehyde C–H arylation and alkylation via the combination of nickel, hydrogen atom transfer, and photoredox catalysis. J. Am. Chem. Soc. 139, 11353–11356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Twilton, J. et al. Selective hydrogen atom abstraction through induced bond polarization: direct α-arylation of alcohols through photoredox, HAT, and nickel catalysis. Angew. Chem. Int. Ed. 57, 5369–5373 (2018).

    CAS  Google Scholar 

  206. Ma, Z.-Y. et al. Sulfonamide as photoinduced hydrogen-atom transfer catalyst for regioselective alkylation of C(sp3)–H bonds adjacent to heteroatoms. Org. Lett. 23, 474–479 (2021).

    CAS  PubMed  Google Scholar 

  207. Perry, I. B. et al. Direct arylation of strong aliphatic C–H bonds. Nature 560, 70–75 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Berger, M., Goldblatt, I. L. & Steel, C. Photochemistry of benzaldehyde. J. Am. Chem. Soc. 95, 1717–1725 (1973).

    CAS  Google Scholar 

  209. Dórman, G., Nakamura, H., Pulsipher, A. & Prestwich, G. D. The life of pi star: exploring the exciting and forbidden worlds of the benzophenone photophore. Chem. Rev. 116, 15284–15398 (2016).

    PubMed  Google Scholar 

  210. Shen, Y., Gu, Y. & Martin, R. sp3 C–H arylation and alkylation enabled by the synergy of triplet excited ketones and nickel catalysts. J. Am. Chem. Soc. 140, 12200–12209 (2018).

    CAS  PubMed  Google Scholar 

  211. Dewanji, A., Krach, P. E. & Rueping, M. The dual role of benzophenone in visible-light/nickel photoredox-catalyzed C–H arylations: hydrogen-atom transfer and energy transfer. Angew. Chem. Int. Ed. 58, 3566–3570 (2019).

    CAS  Google Scholar 

  212. Zhang, L. et al. The combination of benzaldehyde and nickel-catalyzed photoredox C(sp3)–H alkylation/arylation. Angew. Chem. Int. Ed. 58, 1823–1827 (2019).

    Google Scholar 

  213. Si, X., Zhang, L. & Hashmi, S. K. Benzaldehyde- and nickel-catalyzed photoredox C(sp3)–H alkylation/arylation with amides and thioethers. Org. Lett. 21, 6329–6332 (2019).

    CAS  PubMed  Google Scholar 

  214. Heitz, D. R., Tellis, J. C. & Molander, G. A. Photochemical nickel-catalyzed C–H arylation: synthetic scope and mechanistic investigations. J. Am. Chem. Soc. 138, 12715–12718 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Shields, B. J. & Doyle, A. G. Direct C(sp3)–H cross-coupling enabled by catalytic generation of chlorine radicals. J. Am. Chem. Soc. 138, 12719–12722 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Nielsen, M. K. et al. Mild, redox-neutral formylation of aryl chlorides through the photocatalytic generation of chlorine radicals. Angew. Chem. Int. Ed. 56, 7191–7194 (2017).

    CAS  Google Scholar 

  217. Chang, X., Lu, H. & Lu, Z. Enantioselective benzylic C–H arylation via photoredox and nickel dual catalysis. Nat. Commun. 10, 3549 (2019).

    Google Scholar 

  218. Cheng, X., Li, T., Liu, Y. & Lu, Z. Stereo- and enantioselective benzylic C–H alkenylation via photoredox/nickel dual catalysis. ACS Catal. 11, 11059–11065 (2021).

    CAS  Google Scholar 

  219. Joe, C. L. & Doyle, A. G. Direct acylation of C(sp3)–H bonds enabled by nickel and photoredox catalysis. Angew. Chem. Int. Ed. 55, 4040–4043 (2016).

    CAS  Google Scholar 

  220. Ahneman, D. T. & Doyle, A. G. C–H functionalization of amines with aryl halides by nickel-photoredox catalysis. Chem. Sci. 7, 7002–7006 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Novaes, L. F. et al. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Chen, N. & Xu, H.-C. Electrochemical generation of nitrogen-centered radicals for organic synthesis. Green Synth. Catal. 2, 165–178 (2021).

    Google Scholar 

  223. Masui, M., Hara, S., Ueshima, T., Kawagushi, T. & Ozaki, S. Anodic oxidation of compounds having benzylic or allylic carbon and α-carbon to hetero atom using N-hydroxyphthalimide as a mediator. Chem. Pharm. Bull. 31, 4209–4211 (1983).

    CAS  Google Scholar 

  224. Masui, M., Hosomi, K., Tsuchida, K. & Ozaki, S. Electrochemical oxidation of olefins using N-hydroxyphthalimide as a mediator. Chem. Pharm. Bull. 33, 4798–4802 (1985).

    CAS  Google Scholar 

  225. Masui, M., Hara, S. & Ozaki, S. Anodic oxidation of amides and lactams using N-hydroxyphthalimide as a mediator. Chem. Pharm. Bull. 34, 975–979 (1986).

    CAS  Google Scholar 

  226. Nutting, J. E., Rafiee, M. R. & Stahl, S. S. Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: Electrochemical properties and their use in electrocatalytic reactions. Chem. Rev. 118, 4834–4885 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Horn, E. J. et al. Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533, 77–81 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Mo, Y. & Jensen, K. F. Continuous N-hydroxyphthalimide (NHPI)-mediated electrochemical aerobic oxidation of benzylic C–H bonds. Chem. Eur. J. 24, 10260–10265 (2018).

    CAS  Google Scholar 

  229. Kawamata, Y. et al. Scalable, electrochemical oxidation of unactivated C–H bonds. J. Am. Chem. Soc. 139, 7448–7451 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Saito, M. et al. N-ammonium ylide mediators for electrochemical C–H oxidation. J. Am. Chem. Soc. 143, 7859–7867 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Rafiee, M., Wang, F., Hruszkewycz, D. P. & Stahl, S. S. N-hydroxyphthalimide-mediated electrochemical iodination of methylarenes and comparison to electron-transfer-initiated C–H functionalization. J. Am. Chem. Soc. 140, 22–25 (2018).

    CAS  PubMed  Google Scholar 

  232. Hayashi, R., Shimizu, A. & Yoshida, J. The stabilized cation pool method: metal- and oxidant-free benzylic C–H/aromatic C–H cross-coupling. J. Am. Chem. Soc. 138, 8400–8403 (2016).

    CAS  PubMed  Google Scholar 

  233. Zhu, Y. et al. A promising electro-oxidation of methyl-substituted aromatic compounds to aldehydes in aqueous imidazole ionic liquid solutions. J. Electroanal. Chem. 751, 105–110 (2015).

    CAS  Google Scholar 

  234. Das, A., Nutting, J. E. & Stahl, S. S. Electrochemical C–H oxygenation and alcohol dehydrogenation involving Fe-oxo species using water as the oxygen source. Chem. Sci. 10, 7542–7548 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Robinson, S. G., Mack, J. B. C., Alektiar, S. N., Du Bois, J. & Sigman, M. S. Electrochemical ruthenium-catalyzed C–H hydroxylation of amine derivatives in aqueous acid. Org. Lett. 22, 7060–7063 (2020).

    CAS  PubMed  Google Scholar 

  236. Meyer, T. H., Samanta, R. C., Del Vecchio, A. & Ackermann, L. Mangana(III/IV)electro-catalyzed C(sp3)–H azidation. Chem. Sci. 12, 2890–2897 (2021).

    CAS  Google Scholar 

  237. Niu, L. et al. Manganese-catalyzed oxidative azidation of C(sp3)–H bonds under electrophotocatalytic conditions. J. Am. Chem. Soc. 142, 17693–17702 (2020).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the NIH (R35 GM134929).

Author information

Authors and Affiliations

Authors

Contributions

D.L.G. and S.-E.S. contributed equally to all aspects of the Review. D.L.G., S.-E.S. and S.S.S. wrote, edited and reviewed the manuscript.

Corresponding author

Correspondence to Shannon S. Stahl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks S. Bagley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golden, D.L., Suh, SE. & Stahl, S.S. Radical C(sp3)–H functionalization and cross-coupling reactions. Nat Rev Chem 6, 405–427 (2022). https://doi.org/10.1038/s41570-022-00388-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00388-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing