Skip to main content

Advertisement

Log in

Influence of a Catalyst in Obtaining a Post-consumer Pet-Based Alkyd Resin that Meets Circular Economy Principles

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The paper studied the influence of a catalyst, comparing it with its traditional counterparts, in the process of obtaining a polyethylene terephthalate (PET)-based alkyd resin from post-consumer beverage bottles and how it consumes raw materials and generates waste. The resin was obtained in two phases: (1) glycerol and soybean oil alcoholysis reaction, a renewable material, for polyalcohol production, and (2) polyalcohol and polyacid esterification reaction to obtain the alkyd resin (reaction via solvent). A lithium octoate catalyst (OctLi) was used, not traditional in the alcoholysis reaction, and a fraction of the polyacid replaced by post-consumer PET at a proportion of up to 24% by weight in the esterification reaction. The OctLi catalyst caused a reaction in 30 min, compared to zinc acetate (120 min) and lithium hydroxide (LiOH, 60 min). Using post-consumer PET in obtaining the alkyd resin also decreased the esterification reaction time by 22% (8% PET), 67% (16% PET) and 72% (24% PET), compared to esterification without PET. The reaction time, considering alcoholysis with OctLi and partial esterification with PET (with 24% PET), was 180 min. Adding alcoholysis time with the LiOH catalyst and esterification without PET raises the reaction time to 600 min. Process water formed during the esterification stage declined by 15% (8% PET), 50% (16% PET) and 77% (24% PET), compared to the reaction without PET. The shorter reaction time resulted in less equipment use and consequent lower energy consumption. Another result was that the alkyd resin obtained with 8% PET was adequate for paint formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Torlakoǧlu A, Güçlü G (2009) Alkyd-amino resins based on waste PET for coating applications. Waste Manag 29:350–354. https://doi.org/10.1016/j.wasman.2008.02.018

    Article  CAS  PubMed  Google Scholar 

  2. Büyükyonga ÖN, Akgün N, Acar I, Güçlü G (2020) The usage of novel acrylic-modified water-reducible alkyd resin obtained from post-consumer PET bottles in water-based paint formulation. J Mater Cycles Waste Manag 22:187–196. https://doi.org/10.1007/s10163-019-00929-y

    Article  CAS  Google Scholar 

  3. Walther S, Strehmel B, Strehmel V (2018) Functionalization of an alkyd resin with (meth)acrylate groups for photoinitiated polymerization. Prog Org Coat 125:316–324. https://doi.org/10.1016/j.porgcoat.2018.08.028

    Article  CAS  Google Scholar 

  4. Uzoh CF, Obodo NJ, Onukwuli OD (2018) Exploring the effect of styrene and anhydride ratio on the coating properties of non-drying vegetable oil based alkyd resin. J King Saud Univ Eng Sci 30:12–21. https://doi.org/10.1016/j.jksues.2015.12.004

    Article  Google Scholar 

  5. Hofland A (2012) Alkyd resins: from down and out to alive and kicking. Prog Org Coat 73:274–282. https://doi.org/10.1016/j.porgcoat.2011.01.014

    Article  CAS  Google Scholar 

  6. Britannica Academic (2009) Alkyd resin. Encycl Br.

  7. Issam AM, Hena S, Nurul Khizrien AK (2011) A new unsaturated poly(ester-urethane) based on terephthalic acid derived from polyethylene terephthalate (PET) of waste bottles. J Polym Environ 20:469–476. https://doi.org/10.1007/S10924-011-0407-0

    Article  Google Scholar 

  8. Mutar MA, Abdul Hassan NM (2017) Synthesis and characterization of new alkyd resins (short, medium and long) based on sunflower oil and linoleic acid as binder for paints. Int J Chem Petrochim Technol 7:1–16

    Google Scholar 

  9. Alam M, Akram D, Sharmin E et al (2014) Vegetable oil based eco-friendly coating materials: a review article. Arab J Chem 7:469–479. https://doi.org/10.1016/j.arabjc.2013.12.023

    Article  CAS  Google Scholar 

  10. Dullius J, Ruecker C, Ligabue R, Einloft S (2006) Chemical recycling of post-consumer PET: alkyd resins synthesis. Prog Org Coat 57:123–127. https://doi.org/10.1016/j.porgcoat.2006.07.004

    Article  CAS  Google Scholar 

  11. Karayannidis GP, Achilias DS (2007) Chemical recycling of poly(ethylene terephthalate). Macromol Mater Eng 292:128–146. https://doi.org/10.1002/mame.200600341

    Article  CAS  Google Scholar 

  12. Patil DM, Phalak GA, Mhaske ST (2018) Design and synthesis of bio-based epoxidized alkyd resin for anti-corrosive coating application. Iran Polym J 27:709–719. https://doi.org/10.1007/s13726-018-0646-1

    Article  CAS  Google Scholar 

  13. Haggag K, Elshemy NS, Niazy W (2014) Recycling of waste PET into useful alkyd resin synthesis by microwave irradiation and applied in textile printing. Res J Text Appar 18:80–88

    Article  CAS  Google Scholar 

  14. Pacheco EBAV, Visconte LLY, Senra EM, da Silva AEFA (2019) Processo de obtenção de resina alquídica à base de poli(tereftalato de etileno) pós-consumo ou não, com tempo reduzido de reação.

  15. Kawamura C, Ito K, Nishida R et al (2002) Coating resins synthesized from recycled PET. Prog Org Coat 45:185–191. https://doi.org/10.1016/S0300-9440(01)00253-3

    Article  CAS  Google Scholar 

  16. Spasojević PM, Panić VV, Džunuzović JV et al (2015) High performance alkyd resins synthesized from postconsumer PET bottles. RSC Adv 5:62273–62283. https://doi.org/10.1039/c5ra11777a

    Article  Google Scholar 

  17. Lorenzetti C, Manaresi P, Berti C, Barbiroli G (2006) Chemical recovery of useful chemicals from polyester (PET) waste for resource conservation: a survey of state of the art. J Polym Environ 14:89–101. https://doi.org/10.1007/S10924-005-8711-1

    Article  CAS  Google Scholar 

  18. Mazurek-Budzyńska MM, Rokicki G, Paśnik K (2016) Utilization of poly(ethylene terephthalate) waste in the synthesis of air-drying polyester alkyd resins and aliphatic-aromatic poly(ester-carbonate)s. Polimery. https://doi.org/10.14314/polimery.2016.600

    Article  Google Scholar 

  19. Ikladious NE, Asaad JN, Emira HS, Mansour SH (2017) Progress in organic coatings alkyd resins based on hyperbranched polyesters and PET waste for coating applications. Prog Org Coat 102:217–224. https://doi.org/10.1016/j.porgcoat.2016.10.015

    Article  CAS  Google Scholar 

  20. Macijauskas G, Jankauskaite V (2013) Epoxy resin and polyurethane compositions from glycolized poly(ethylene terephthalate) wastes. Mater Sci 19:283–290. https://doi.org/10.5755/j01.ms.19.3.5237

    Article  Google Scholar 

  21. Tawfik SY, Sabaa MW, Botros RT (2017) Preparation and characterisation of water soluble polyester coatings based on waste materials. Pigm Resin Technol 46:408–422. https://doi.org/10.1108/PRT-07-2016-0072

    Article  CAS  Google Scholar 

  22. Sinha VK, Patel MR, Patel JV (2010) Pet waste management by chemical recycling: a review. J Polym Environ. https://doi.org/10.1007/s10924-008-0106-7

    Article  Google Scholar 

  23. Cakić SM, Valcic MD, Ristić IS et al (2019) Waterborne polyurethane-silica nanocomposite adhesives based on castor oil-recycled polyols: effects of (3-aminopropyl)triethoxysilane (APTES) content on properties. Int J Adhes Adhes 90:22–31. https://doi.org/10.1016/j.ijadhadh.2019.01.005

    Article  CAS  Google Scholar 

  24. Phetphaisit CW, Bumee R, Namahoot J et al (2013) Polyurethane polyester elastomer: innovative environmental friendly wood adhesive from modified PETs and hydroxyl liquid natural rubber polyols. Int J Adhes Adhes 41:127–131. https://doi.org/10.1016/j.ijadhadh.2012.11.007

    Article  CAS  Google Scholar 

  25. Luo X, Li Y (2014) Synthesis and characterization of polyols and polyurethane foams from PET waste and crude glycerol. J Polym Environ 22:318–328. https://doi.org/10.1007/s10924-014-0649-8

    Article  CAS  Google Scholar 

  26. Badri KH, Dawi LIM, Aziz NAA (2013) Rigid polyurethane foam from glycolysed polyethylene terephthalate dissolved in palm-based polyol. Sains Malays 42:449–457

    Google Scholar 

  27. Soucek MD, Salata RR (2014) Alkyd resin synthesis. Encycl Polym Nanomater.

  28. Selim MS, Shenashen MA, Hashem AI, El-Safty SA (2018) Linseed oil-based alkyd/Cu2O nanocomposite coatings for surface applications. New J Chem 42:10048–10058. https://doi.org/10.1039/c7nj03440g

    Article  CAS  Google Scholar 

  29. Kaska J, Lešek F (1991) Processes and equipment for alkyd and unsaturated polyester resin manufacture. Prog Org Coat 19:283–331. https://doi.org/10.1016/0033-0655(91)80016-c

    Article  CAS  Google Scholar 

  30. Ezeh IE, Umoren SA, Essien EE, Udoh AP (2012) Studies on the utilization of Hura crepitans L. seed oil in the preparation of alkyd resins. Ind Crops Prod 36:94–99

    Article  CAS  Google Scholar 

  31. Islam MR, Beg MDH, Jamari SS (2014) Alkyd based resin from non-drying oil. Procedia Eng 90:78–88. https://doi.org/10.1016/j.proeng.2014.11.818

    Article  CAS  Google Scholar 

  32. Thanamongkollit N, Miller KR, Soucek MD (2012) Synthesis of UV-curable tung oil and UV-curable tung oil based alkyd. Prog Org Coat 73:425–434. https://doi.org/10.1016/j.porgcoat.2011.02.003

    Article  CAS  Google Scholar 

  33. Essien EE, Umoren SA (2016) Synthesis and characterization of Luffa cylindrica fatty acids-based alkyd resins. Res Chem Intermed. https://doi.org/10.1007/s11164-015-2141-z

    Article  Google Scholar 

  34. Oliveira DV, Wolf CR, Verona CC, Corrêa DS (2003) Análise de polóis e poliácidos constituintes de resinas alquídicas visando CQ ou desenvolvimento de novos polímeros para tintas base óleo. Rev Iniciação Científica da ULBRA 119–125

  35. Patton TC (1962) Alkyd resin technology: formulating techniques and allied calculations. Wiley, New York

    Google Scholar 

  36. Ghosal K, Nayak C (2022) Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions. Mater Adv 2:1974–1992. https://doi.org/10.1039/D1MA01112J

    Article  Google Scholar 

  37. Ertas K, Güçlü G (2005) Alkyd resins synthesized from glycolysis products of waste PET. Polym Plast Technol Eng. https://doi.org/10.1081/PTE-200060656

    Article  Google Scholar 

  38. Karayannidis GP, Achilias DS, Sideridou ID, Bikiaris DN (2005) Alkyd resins derived from glycolized waste poly(ethylene terephthalate). Eur Polym J 41:201–210. https://doi.org/10.1016/j.eurpolymj.2004.10.001

    Article  CAS  Google Scholar 

  39. Todorov N, Dzhundzhurova B, Todorova D (2016) Alkyd resin obtained from crude glycerol and waste polyethylene terephthalate. Int J Appl Res 2:101–103

    Google Scholar 

  40. Bulak E, Acar II, Karayannidis GP et al (2010) Alkyd resins based on waste PET for water-reducible coating applications. Polym Bull 64:739–748. https://doi.org/10.1007/s00289-009-0166-4

    Article  CAS  Google Scholar 

  41. Ito K, Kawamura C (2003) Process for producing alkyd resins

  42. Ouyang S, Xie Y, Fu W et al (2021) Preparation of autoxidative water-reducible alkyd resins from waste polyethylene terephthalate. R Soc Open Sci. https://doi.org/10.1139/cjc-2012-0370

    Article  PubMed  PubMed Central  Google Scholar 

  43. Acar I, Bal A, Güçlü G (2013) The use of intermediates obtained from aminoglycolysis of waste poly(ethylene terephthalate) (PET) for the synthesis of water-reducible alkyd resin. Can J Chem 91:357–363

    Article  CAS  Google Scholar 

  44. Tuna O, Bal A, Güçlü G (2013) Investigation of the effect of hydrolysis products of postconsumer polyethylene terephthalate bottles on the properties of alkyd resins. Polym Eng Sci. https://doi.org/10.1002/pen.23247

    Article  Google Scholar 

  45. Bulak E, Acar I (2014) The use of aminolysis, aminoglycolysis, and simultaneous aminolysis-hydrolysis products of waste pet for production of paint binder. Polym Eng Sci. https://doi.org/10.1002/pen.23773

    Article  Google Scholar 

  46. Jamdar V, Kathalewar M, Sabnis A (2018) Depolymerization study of PET waste using aminoethylethanolamine and recycled product application as polyesteramide synthesis. J Polym Environ 26:2601–2618. https://doi.org/10.1007/s10924-017-1149-4

    Article  CAS  Google Scholar 

  47. Güçlü G, Orbay M (2009) Alkyd resins synthesized from postconsumer PET bottles. Prog Org Coat 65:362–365. https://doi.org/10.1016/j.porgcoat.2009.02.004

    Article  CAS  Google Scholar 

  48. Guclu G (2010) Alkyd resins based on waste PET for water-reducible coating applications. Polym Bull. https://doi.org/10.1007/s00289-009-0166-4

    Article  Google Scholar 

  49. Todorov NS (2019) Surface coatings based on glycerol phase and waste polyethylene terephthalate. Bulg Chem Commun 51:107–112

    Google Scholar 

  50. Meneghetti SMP, Meneghetti MR, Brito YC (2013) A reação de transesterificação, algumas aplicações e obtenção de biodiesel. Rev Virtual Quim 5:63–73

    CAS  Google Scholar 

  51. Suarez PAZ, Meneghetti SMP, Meneghetti MR, Wolf CR (2007) Transformação de triglicerídeos em combustíveis, materiais poliméricos e insumos químicos: algumas aplicações da catálise na oleoquímica. Quim Nova 30:667–676

    Article  CAS  Google Scholar 

  52. Miran F, Mumtaz MW, Mukhtar H, Danish M (2017) Value-added use of residual glycerol from biodiesel production process via the optimized synthesis of alkyd resins. Process Saf Environ Prot 109:659–669. https://doi.org/10.1016/j.psep.2017.05.003

    Article  CAS  Google Scholar 

  53. Uzoh CF, Nwabanne JT (2016) Investigating the effect of catalyst type and concentration on the functional group conversion in castor seed oil alkyd resin production. Adv Chem Eng Sci 06:190–200. https://doi.org/10.4236/aces.2016.62020

    Article  CAS  Google Scholar 

  54. Gooch JW (2002) Emulsification and polymerization of alkyd resins. Kluwer Academic Publishers, New York

    Google Scholar 

  55. Atta AM, El-Ghazawy RA, El-Saeed AM (2013) Corrosion protective coating based on alkyd resins derived from recycled poly(ethylene terephthalate) waste for carbon steel. Int J Electrochem Sci 8:5136–5152

    CAS  Google Scholar 

  56. Momodu VM, Omorogbe SO, Ikhuoria EU et al (2011) Synthesis and evaluation of performance characteristics of walnut (tetracarpidium conophorum) seed oil-modified alkyd resin. Researcher 3:63–66

    Google Scholar 

  57. Elba ME, Rehim EMA, Ashery RE (2018) Synthesis and characterization of alkyd resin based on soybean oil and glycerin using zirconium octoate as catalyst. Int J Chem Technol 2:34–43. https://doi.org/10.32571/ijct.347670

    Article  Google Scholar 

  58. Nosal H, Nowicki J, Warzała M et al (2015) Synthesis and characterization of alkyd resins based on Camelina sativa oil and polyglycerol. Prog Org Coat 86:59–70. https://doi.org/10.1016/j.porgcoat.2015.04.009

    Article  CAS  Google Scholar 

  59. Ong HR, Khan MMR, Ramli R et al (2015) Tailoring base catalyzed synthesis of palm oil based alkyd resin through CuO nanoparticles. RSC Adv 5:95894–95902. https://doi.org/10.1039/c5ra19575f

    Article  CAS  Google Scholar 

  60. Ikhuoria EU, Aigbodion AI, Okieimen FE (2004) Enhancing the quality of alkyd resins using methyl esters of rubber seed oil. Trop J Pharm Res 3:311–316. https://doi.org/10.4314/tjpr.v3i1.14615

    Article  Google Scholar 

  61. Ma Y, Lei R, Yang X, Yang F (2020) Eco-friendly waterborne alkyd resin from polyethylene terephthalate waste. J Polym Environ 283(28):1083–1094. https://doi.org/10.1007/S10924-020-01666-2

    Article  Google Scholar 

  62. Raheem AB, Noor ZZ, Hassan A et al (2019) Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: a review. J Clean Prod 225:1052–1064. https://doi.org/10.1016/j.jclepro.2019.04.019

    Article  CAS  Google Scholar 

  63. Molero C, de Lucas A, Rodríguez JF (2009) Activities of octoate salts as novel catalysts for the transesterification of flexible polyurethane foams with diethylene glycol. Polym Degrad Stab 94:533–539. https://doi.org/10.1016/j.polymdegradstab.2009.01.021

    Article  CAS  Google Scholar 

  64. Dimitrov V, Komatsu T (2010) An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J Univ Chem Technol Metall 45:219–250. https://doi.org/10.1016/j.jnoncrysol.2009.11.014

    Article  CAS  Google Scholar 

  65. Kirchherr J, Reike D, Hekkert M (2017) Conceptualizing the circular economy: an analysis of 114 definitions. Resour Conserv Recycl 127:221–232. https://doi.org/10.1016/j.resconrec.2017.09.005

    Article  Google Scholar 

  66. Chiplunkar PP, Pratap AP (2016) Utilization of sunflower acid oil for synthesis of alkyd resin. Prog Org Coat 93:61–67

    Article  CAS  Google Scholar 

  67. Thakur S, Karak N (2013) Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Prog Org Coat 76:157–164. https://doi.org/10.1016/j.porgcoat.2012.09.001

    Article  CAS  Google Scholar 

  68. ASTM International (2015) ASTM D465—standard test methods for saponification number of naval store products including tall oil and other related products. ASTM International, Philadelphia

    Google Scholar 

  69. ASTM International (2015) ASTM D2369—standard test method for volatile content of coatings. ASTM International, Philadelphia

    Google Scholar 

  70. Dutra RCL, Takahashi MFK, Diniz MF (2005) Nova metodologia para identificação de componentes em tintas comerciais. Polímeros 12:273–279. https://doi.org/10.1590/s0104-14282002000400010

    Article  Google Scholar 

  71. Cakic S, Boskovic L (2010) FTIR analysis and the effects of alkyd/melamine resin ratio on the properties of the coatings. Hem Ind 63:637–643. https://doi.org/10.2298/hemind0906637c

    Article  Google Scholar 

  72. ASTM International (2017) ASTM D1545—standard test method for viscosity of transparent liquids by bubble time method. ASTM International, Philadelphia

    Google Scholar 

  73. Velásquez EJ, Garrido L, Guarda A et al (2019) Increasing the incorporation of recycled PET on polymeric blends through the reinforcement with commercial nanoclays. Appl Clay Sci. https://doi.org/10.1016/j.clay.2019.105185

    Article  Google Scholar 

  74. Badía JD, Vilaplana F, Karlsson S, Ribes-Greus A (2009) Thermal analysis as a quality tool for assessing the influence of thermo-mechanical degradation on recycled poly(ethylene terephthalate). Polym Test 28:169–175. https://doi.org/10.1016/j.polymertesting.2008.11.010

    Article  CAS  Google Scholar 

  75. Fann DM, Huang SK, Lee JY (1996) Kinetics and thermal crystallinity of recycled PET. I. Dynamic cooling crystallization studies on blends recycled with engineering PET. J Appl Polym Sci 61:1375–1385. https://doi.org/10.1002/(SICI)1097-4628(19960822)61:8%3c1375::AID-APP19%3e3.0.CO;2-Y

    Article  CAS  Google Scholar 

  76. Montava-Jorda S, Lascano D, Quiles-Carrillo L et al (2020) Mechanical recycling of partially bio-based and recycled polyethylene terephthalate blends by reactive extrusion with poly(styrene-co-glycidyl methacrylate). Polymers (Basel) 12:1–20. https://doi.org/10.3390/polym12010174

    Article  CAS  Google Scholar 

  77. Miri FS, Ehsani M, Khonakdar HA, Kavyani B (2020) A comprehensive study on physical, mechanical, and thermal properties of poly(ethylene terephthalate) filled by micro- and nanoglass flakes. J Vinyl Addit Technol 26:380–389. https://doi.org/10.1002/vnl.21753

    Article  CAS  Google Scholar 

  78. Amaro LP, Coiai S, Ciardelli F, Passaglia E (2015) Preparation and testing of a solid secondary plasticizer for PVC produced by chemical degradation of post-consumer PET. Waste Manag 46:68–75. https://doi.org/10.1016/j.wasman.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  79. Singh NL, Shah N, Desai CF et al (2004) Modification of polyethylene terephthalate by proton irradiation. Radiat Eff Defects Solids 159:475–482. https://doi.org/10.1080/10420150412331296844

    Article  CAS  Google Scholar 

  80. Acar I, Güçlü G (2013) The effect of xylene as aromatic solvent to aminoglycolysis of post consumer PET bottles. Polym Eng Sci. https://doi.org/10.1002/pen.23491

    Article  Google Scholar 

  81. Delatte D, Kaya E, Kolibal LG et al (2014) Synthesis and characterization of a soybean oil-based macromonomer. J Appl Polym Sci 131:1–10. https://doi.org/10.1002/app.40249

    Article  CAS  Google Scholar 

  82. Maqsood Khan S, Gull N, Yaseen Akram M et al (2014) A study on synthesis and testing of polyols using soybean oil and castor oil. ASEAN J Chem Eng 13:27–38

    Article  Google Scholar 

  83. Salehpour S, Dubé MA (2012) Reaction monitoring of glycerol step-growth polymerization using ATR-FTIR spectroscopy. Macromol React Eng 6:85–92. https://doi.org/10.1002/mren.201100071

    Article  CAS  Google Scholar 

  84. Cordeiro CS, Da Silva FR, Wypych F, Ramos LP (2011) Catalisadores heterogêneos para a produção de monoésteres graxos (biodiesel). Quim Nova 34:477–486. https://doi.org/10.1590/S0100-40422011000300021

    Article  CAS  Google Scholar 

  85. Aigbodion AI, Okieimen FE (2001) An investigation of the utilisation of African locustbean seed oil in the preparation of alkyd resins. Ind Crops Prod 13:29–34. https://doi.org/10.1016/S0926-6690(00)00050-9

    Article  CAS  Google Scholar 

  86. Güçlu G (2010) Alkyd resins based on waste PET for water-reducible coating applications. Polym Bull 64:739–748. https://doi.org/10.1007/s00289-009-0166-4

    Article  CAS  Google Scholar 

  87. Akyol A (2012) Treatment of paint manufacturing wastewater by electrocoagulation. Desalination 285:91–99. https://doi.org/10.1016/j.desal.2011.09.039

    Article  CAS  Google Scholar 

  88. Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds, 3rd edn., 7th edn. Wiley, Hoboken

    Google Scholar 

  89. Fazenda JM (1993) Tintas e vernizes—Ciência e Tecnologia, vol 1, 1a. ABRAFATI, São Paulo

    Google Scholar 

Download references

Acknowledgements

The authors thank the Research Support Foundation of Rio de Janeiro State (FAPERJ) for the grant awarded to Elaine M. Senra, the Coordination for the Improvement of Higher Education Personnel (CAPES) and the National Council for Scientific and Technological Development (CNPq).

Funding

This work is part of Elaine Senra's master's thesis developed at the Laboratories of the Instituto de Macromoleculas Professora Eloisa Mano of the Federal University of Rio Janeiro, with the support of the National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES) and Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elen B. A. V. Pacheco.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senra, E.M., da Silva, A.E.F.A., Visconte, L.L.Y. et al. Influence of a Catalyst in Obtaining a Post-consumer Pet-Based Alkyd Resin that Meets Circular Economy Principles. J Polym Environ 30, 3761–3778 (2022). https://doi.org/10.1007/s10924-022-02471-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02471-9

Keywords

Navigation