Skip to main content
Log in

Geostatistical analysis and hydrofacies simulation for estimating the spatial variability of hydraulic conductivity in the Jianghan Plain, central China

Analyse géostatistique et simulation des hydrofaciès pour estimer la variabilité spatiale de la conductivité hydraulique dans la plaine de Jianghan, Chine centrale

Análisis geoestadístico y simulación de hidrofacies para estimar la variabilidad espacial de la conductividad hidráulica en la llanura de Jianghan, China central

地质统计和三维水相模拟江汉平原典型含水层渗透系数空间变异分布特征

Análise geoestatística e simulação de hidrofácies para estimar a variabilidade espacial da condutividade hidráulica na Planície de Jianghan, China central

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

This study evaluated the spatial variability of hydraulic conductivity (K) along the Han River watershed in the Jianghan Plain (China) by using different geostatistical methods. The K distribution was estimated from 58 borehole measurements, and co-kriging estimates were obtained by incorporating 287 electrical resistivity (ρ) and 260 hydraulic gradient (I) values as auxiliary data. Additionally, 2,980 lithology samples were classified into three hydrofacies units in terms of decreasing K, which was simulated accordingly. The results indicate that the highest K values are in the western part of Shahu town and near the Yangtze River. The trend continues to diminish across western and northern Xiantao town and north-west of Xingou town, as well as across the transition zone from highland to lowland (from Shayang town to Zhanggang town). The low K values occur from the northern part of Jiukou town to Shayang town, and around Xingou town, and then are scattered around the high K values, with the lowest K values distributed in the north-west of the study area (from the catchment margin to the north of Shayang town), in Yanglinwei town, and east of Shahu town. As for the geostatistical methods, co-kriging estimates based on ρ and I highlight the variability of K, with the latter providing more realistic results. The three-dimensional hydrofacies model realistically represents the spatial distributions of K in the Quaternary aquifer system. The estimated results and hydrofacies simulation could provide a basic database for further groundwater modeling and water resource evaluation.

Résumé

Cette étude évalue la variabilité spatiale de la conductivité hydraulique (K) dans le bassin versant de la rivière Han, plaine de Jianghan (Chine), en utilisant différentes méthodes géostatistiques. La distribution de K est estimée à partir de mesures sur 58 forages et les estimations de cokrigeage obtenues en incorporant 287 valeurs de résistivité électrique (ρ) et 260 valeurs de gradient hydraulique (I) comme données auxiliaires. En complément, 2980 échantillons de roche ont été classés en trois unités d’hydrofaciès en termes de K décroissant, qui est simulé en conséquence. Les résultats indiquent que les valeurs les plus élevées de K sont situées dans la partie ouest de la ville de Shahu et à proximité du fleuve Yang Tsé. La tendance continue à diminuer vers l’ouest et le nord de la ville de Xiantao et le nord-ouest de la ville de Xingou, de même que le long de la zone de transition depuis les reliefs vers la plaine (de la ville de Shayang à celle de Zhanggang). Les valeurs faibles de K se situent entre la partie nord de la ville de Jiukou et celle de Shayang et autour de la ville de Xingou, puis elles sont dispersées autour de valeurs élevées de K, avec les valeurs les plus basses de K réparties dans le nord-ouest de la zone d’étude (depuis la bordure du bassin jusqu’au nord de la ville de Shayang), dans la ville de Yanglinwei et à l’est de la ville de Shahu. En ce qui concerne les méthodes géostatistiques, les estimations de cokrigeage basées sur ρ et I mettent en évidence la variabilité de K, le second paramétre produisant des résultats plus réalistes. Le modèle tridimensionnel des hydrofaciès représente de manière réaliste les distributions spatiales de K dans le système aquifère quaternaire. Les résultats estimés et la simulation des hydrofaciès pourraient constituer une base de données élémentaire en vue d’une modélisation hydrogéologique et d’évaluation des ressources en eau.

Resumen

Este estudio evaluó la variabilidad espacial de la conductividad hidráulica (K) a lo largo de la cuenca del río Han en la llanura de Jianghan (China) mediante el uso de diferentes métodos geoestadísticos. La distribución de K se estimó a partir de 58 mediciones de perforaciones, y se obtuvieron estimaciones de co-kriging incorporando 287 valores de resistividad eléctrica (ρ) y 260 de gradiente hidráulico (I) como datos auxiliares. Además, se clasificaron 2,980 muestras litológicas en tres unidades de hidrofacies en función de la disminución de K, que se simuló en consecuencia. Los resultados indican que los valores más altos de K se encuentran en la parte occidental de la ciudad de Shahu y cerca del río Yangtze. La tendencia sigue disminuyendo en el oeste y el norte de la ciudad de Xiantao y en el noroeste de la ciudad de Xingou, así como en la zona de transición de las zonas altas a las bajas (desde la ciudad de Shayang hasta la de Zhanggang). Los valores bajos de K se dan desde la parte norte de la ciudad de Jiukou hasta la ciudad de Shayang, y alrededor de la ciudad de Xingou, y luego se dispersan alrededor de los valores altos de K, con los valores más bajos de K distribuidos en el noroeste de la zona de estudio (desde el margen de la cuenca hasta el norte de la ciudad de Shayang), en la ciudad de Yanglinwei y al este de la ciudad de Shahu. En cuanto a los métodos geoestadísticos, las estimaciones de co-kriging basadas en ρ y en I ponen de manifiesto la variabilidad de K, siendo esta última la que proporciona resultados más realistas. El modelo tridimensional de hidrofacies representa de forma realista las distribuciones espaciales de K en el sistema acuífero cuaternario. Los resultados estimados y la simulación de la hidrofacies podrían proporcionar una base de datos básica para la posterior modelización de las aguas subterráneas y la evaluación de los recursos hídricos.

摘要

本文选定江汉平原汉江流域为研究区, 采用不同地质统计学方法研究了流域尺度下典型含水层渗透系数空间变异分布特征。通过58眼抽水钻孔反演的典型含水层渗透系数K并使用单变量克里金法估计了K场空间变异分布。为更充分利用多元地质信息在空间上分布的有用资料, 将287个岩土电阻率(ρ)和260个水力梯度(I)作为辅助变量与抽水试验反演K组成协同区域化变量用于协同克里金估计。此外, 还将2980个岩芯钻孔取样按K值范围递减划分为3个水相单元进行三维水相随机模拟。结果表明, K值最大地区出现在沙湖镇西部和长江附近; 较大K值出现在仙桃市西部和北部、新沟镇西北部以及丘陵山区向低平原区过渡地带(沙洋镇至张港市); 低K值出现在旧口镇北部至沙洋镇、新沟镇周边以及散布在局部高K值附近; K值最小出现在研究区西北部(流域边缘至沙洋镇北部), 杨林尾镇和沙湖镇东部。克里金估计中基于ρI的协同克里格估计更能真实表征局部范围内K场空间变异特征, 后者更为显著。三维水相模型真实还原了含水层渗透系数K空间结构。本研究结果可为江汉平原地下水数值模拟和水资源评价提供数据基础。

Resumo

Este estudo avaliou a variabilidade espacial da condutividade hidráulica (K) ao longo da bacia do Rio Han na Planície de Jianghan (China) usando diferentes métodos geoestatísticos. A distribuição K foi estimada a partir de 58 medições de poços, e as estimativas de cokrigagem foram obtidas incorporando 287 valores de resistividade elétrica (ρ) e 260 de gradiente hidráulico (I) como dados auxiliares. Além disso, 2,980 amostras de litologia foram classificadas em três unidades de hidrofácies em termos de K decrescente, que foi simulado de acordo. Os resultados indicam que os maiores valores de K estão na parte ocidental da cidade de Shahu e perto do Rio Yangtze. A tendência continua a diminuir no oeste e norte da cidade de Xiantao e no noroeste da cidade de Xingou, bem como na zona de transição do planalto para a planície (da cidade de Shayang para a cidade de Zhanggang). Os valores baixos de K ocorrem da parte norte da cidade de Jiukou até a cidade de Shayang, e ao redor da cidade de Xingou, e então estão espalhados ao redor dos valores altos de K, com os valores mais baixos de K distribuídos no noroeste da área de estudo (da bacia hidrográfica margem ao norte da cidade de Shayang), na cidade de Yanglinwei, e a leste da cidade de Shahu. Quanto aos métodos geoestatísticos, as estimativas de cokrigagem baseadas em ρ e I destacam a variabilidade de K, sendo que este último fornece resultados mais realistas. O modelo tridimensional de hidrofácies representa de forma realista as distribuições espaciais de K no sistema aquífero Quaternário. Os resultados estimados e a simulação de hidrofácies podem fornecer um banco de dados básico para posterior modelagem de águas subterrâneas e avaliação de recursos hídricos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahmed S, de Marsily G, Talbot A (1988) Combined use of hydraulic and electrical properties of an aquifer in a geostatistical estimation of transmissivity. Ground Water 26(1):78–86

    Article  Google Scholar 

  • Alabert FG (1987) Stochastic imaging of spatial distributions using hard and soft data. MSc Thesis, Stanford University, Stanford, CA, 198 pp

  • Almadani S, Ibrahim E, Al-Amri A, Fnais M, Abdelrahman K (2019) Delineation of a fractured granite aquifer in the Alwadeen area, Southwest Saudi Arabia using a geoelectrical resistivity survey. Arab J Geosci 12:449. https://doi.org/10.1007/s12517-019-4646-z

    Article  Google Scholar 

  • Almeida JA (2010) Stochastic simulation methods for characterization of lithoclasses in carbonate reservoirs. Earth Sci Rev 101:250–270

    Article  Google Scholar 

  • Alzraiee AH, Bailey RT, Bau D (2017)Assimilation of historical head data to estimate spatial distributions of stream bed and aquifer hydraulic conductivity fields: parameter estimation of streambed and aquifer conductivity fields. Hydrol Processes 31(7):1527–1538

    Article  Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Petroleum Technology, Technical report 1422, American Institute of Mining and Metallurgical Engineering, Littleton, CO, 146 pp

  • Bai DY, Li CA (2010) Status of Quaternary geology research of Jianghan Basin (in Chinese with English abstract). Geol Sci Technol Inform 29(6):1–6

    Google Scholar 

  • Bai DY, Li CA, Ma TQ, Wang XH, Chen DP (2010) Quaternary tectonic-sedimentary characteristics and environmental evolution of Anxiang Sag in Dongting Basin and its west periphery (in Chinese with English abstract). J Earth Sci Environ 32(2):120–129

    Google Scholar 

  • Bailey R, Baù D (2010) Ensemble smoother assimilation of hydraulic head and return flow data to estimate hydraulic conductivity distribution. Water Resour Res 46(12):W12543. https://doi.org/10.1029/2010WR009147

    Article  Google Scholar 

  • Bogner K, Pappenberger F, Cloke HL (2012) Technical note: the normal quantile transformation and its application in a flood forecasting system. Hydrol Earth Syst Sci 16:1085–1094

    Article  Google Scholar 

  • Böttcher F, Casasso A, Götzl G, Zosseder K (2019) TAP-thermal aquifer potential: a quantitative method to assess the spatial potential for the thermal use of groundwater. Renew Energy 142:85–95

    Article  Google Scholar 

  • Bouhmala N (2019) Combining simulated annealing with local search heuristic for MAX-SAT. J Heuristics 25:47–69

    Article  Google Scholar 

  • Bridge JS, Lunt IA (2009) Depositional models of braided rivers. Blackwell, London, pp 11–50

    Google Scholar 

  • Cabello P, Cuevas JL, Ramos E (2007) 3D modelling of grain size distribution in Quaternary deltaic deposits (Llobregat Delta, NE Spain). Geol Acta 5:231–244

    Google Scholar 

  • Carle SF, Esser BK, Moran JE (2006) High-resolution simulation of basin-scale nitrate transport considering aquifer system heterogeneity. Geosphere 2:195–209

    Article  Google Scholar 

  • Chen C, Wen Z, Liang L, Li X (2017) Inversion of hydrogeological parameters of typical aquifers in Jianghan Plain (in Chinese with English abstract). Earth Sci 42(5):728–733

    Google Scholar 

  • Chiles JP, Delfiner P (1999) Geostatistics: modelling spatial uncertainty. Wiley, New York

    Book  Google Scholar 

  • Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history. Trans Am Geophys Union 27(4):526–534

    Article  Google Scholar 

  • Dai LJ, Wang LQ, Li LF, Liang T, Zhang YY, Ma CX, Xing BS (2018) Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China. Sci Total Environ 621:1433–1444

    Article  Google Scholar 

  • Darcy H (1856) Determination of the laws of flow of water through sand. Les Fantaines Publiques De La Vill De Dijon, Victor Dalmont, Paris

  • de Marsily G, Delay F, Gonçalvès J, Renard P, Teles V, Violette S (2005) Dealing with spatial heterogeneity. Hydrogeol J 13:161–183

    Article  Google Scholar 

  • Delhomme JP (1978) Kriging in hydroscience. Advance Water Resour 1(5):251–226

    Article  Google Scholar 

  • dell’Arciprete D, Bersezio R, Felletti F, Giudici M, Comunian A, Renard P (2012) Comparison of three geostatistical methods for hydrofacies simulation: a test on alluvial sediments. Hydrogeol J 20:299–311

    Article  Google Scholar 

  • Deutsch CV (1992) Annealing techniques applied to reservoir modeling and the integration of geological and engineering (well test) data. PhD Thesis, Stanford University, Stanford, CA

    Google Scholar 

  • Deutsch CV (1998) Cleaning categorical variable (lithofacies) realizations with maximum a posteriori selection. Comput Geosci 24(6):551–562

    Article  Google Scholar 

  • Deutsch CV (2002) Geostatistical reservoir modeling. Oxford University Press, New York

    Google Scholar 

  • Deutsch CV (2006) A sequential indicator simulation program for categorical variables with point and block data: Block SIS. Comput Geosci 32:1669–1681

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1997) GSLIB: geostatistical software library and user’s guide (applied geostatistics series), 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Devlin JF, McElwee CD (2007) Effects of measurement error on horizontal hydraulic gradient estimates. Ground Water 45(1):62–73

    Article  Google Scholar 

  • Duan YH, Gan YQ, Wang YX, Deng YM, Guo XX, Dong CG (2015) Temporal variation of groundwater level and arsenic concentration at Jianghan Plain, central China. J Geochem Explor 149:106–119

    Article  Google Scholar 

  • Eldeiry AA, Garcia LA (2010) Comparison of ordinary kriging, regression kriging, and cokriging techniques to estimate soil salinity using LANDSAT images. J Irrig Drain Eng 136(6):355–364

    Article  Google Scholar 

  • Eramian MG, Schincariol RA, Mansinha L, Stockwell RG (1999) Generation of aquifer heterogeneity maps using two-dimensional spectral texture segmentation techniques. Math Geol 31(3):327–348

    Article  Google Scholar 

  • Etete BI, Noiki FR, Aizebeokhai AP (2017) Estimation of hydraulic parameters from vertical electrical resistivity sounding. J Inform Math Sci 9(2):285–296

    Google Scholar 

  • Falivene O, Cabrera L, Sáez A (2007) Large to intermediate-scale aquifer heterogeneity in fine-grain dominated alluvial fans (Cenozoic As Pontes Basin, northwestern Spain): insight based on three-dimensional geostatistical reconstruction. Hydrogeol J 15(5):861–876

    Article  Google Scholar 

  • Farmer WH (2016) Ordinary kriging as a tool to estimate historical daily streamflow records. Hydrol Earth Syst Sci 20:2721–2735

    Article  Google Scholar 

  • Feng C, Chen JP, Wang QF (1999) Recent sedimentary characteristics and evolution trend in Wuhan section of Yangtze River (in Chinese with English abstract). Earth Sci Front 8(1):23–24

    Google Scholar 

  • Fischer P, De Clercq T, Jardani A, Thannberger L, Massei N, Abbas M (2020) Imaging the hydraulic properties of a contaminated alluvial aquifer perturbed with periodic signals. Hydrogeol J 28:2713–2726

    Article  Google Scholar 

  • Fogg GE, Carle SF (2003) TProGS: simulation review–sequential Gaussian simulation. Rev Lit Arts Americas 32:1–21

    Google Scholar 

  • Gan YQ, Wang YX, Duan YH, Deng YM, Guo XX, Ding XF (2014) Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan Plain, central China. J Geochem Explor 138:81–93

    Article  Google Scholar 

  • Gan YQ, Zhao K, Duan YH, Liang X, Ma T, Wang YX (2018) Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, central China. Hydrogeol J 26:1609–1623

    Article  Google Scholar 

  • Gego EL, Johnson GS, Hankins M (2001) An evaluation of methodologies for the generation of stochastic hydraulic conductivity fields in highly heterogeneous aquifers. Stoch Environ Res Risk Assess 15:47–64

    Article  Google Scholar 

  • Giudici M, Casabianca D, Comunian A (2015) Comparison of three methods of solution to the inverse problem of groundwater hydrology for multiple pumping stimulation. Geophys Res Abstracts 17:EGU 2015-4814

    Google Scholar 

  • Goovaerts P (1996) Stochastic simulation of categorical variables using a classification algorithm and simulated annealing. Math Geol 28(7):909–921

    Article  Google Scholar 

  • Gu YS, Guan S, Ma T, Zhu ZM, Liu HY, Guo S, Yu SQ (2018) Quaternary sedimentary environment documented by borehole stratigraphical records in eastern Jianghan Basin (in Chinese with English abstract). Earth Sci 43(11):3989–4000

    Google Scholar 

  • Guastaldi E, Baldoncini M, Bezzon G, Broggini C, Buso G, Caciolli A, Carmignani L, Callegari I, Colonna T, Dule K, Fiorentini G, Xhixha MK, Mantovani F, Massa G, Menegazzo R, Mou L, Alvarez CR, Strati V, Xhixha G, Zanon A (2013) A multivariate spatial interpolation of airborne γ-ray data using the geological constraints. Remote Sens Environ 137:1–11

    Article  Google Scholar 

  • Guastaldi E, Carloni A, Pappalardo G, Nevini J (2014) Geostatistical methods for lithological aquifer characterization and groundwater flow modeling of the Catania Plain Quaternary aquifer (Italy). J Water Resour Protect 4:272–296

    Article  Google Scholar 

  • Harvey CF, Gorelick SM (1995) Mapping hydraulic conductivity: sequential conditioning with measurements of solute arrival time, hydraulic head, and local conductivity. Water Resour Res 31(7):1615–1626

    Article  Google Scholar 

  • He Y, Hu K, Li B, Chen D, Suter HC, Huang Y (2009) Comparison of sequential indicator simulation and transition probability indicator simulation used to model clay content in microscale surface soil. Soil Sci 174:395–402

    Article  Google Scholar 

  • Heigold PC, Gilkeson RH, Cartwright K, Reed PC (1979) Aquifer transmissivity from surficial electrical methods. Ground Water 7(4):338–345

    Article  Google Scholar 

  • Hess KM, Wolf SH, Celia MA (1992) Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts 3: hydraulic conductivity variability and calculated macrodispersivites. Water Resour Res 28:2011–2027

    Article  Google Scholar 

  • Hoeksema RJ, Kitanidis PK (1985) Analysis of spatial structure of properties of selected aquifer. Water Resour Res 21:563–572

    Article  Google Scholar 

  • Hoffman ZR, Kivanc K, DiMarzio CA (2018) Single image structured illumination (SISIM) for in-vivo imaging. Proc SPIE 2:10499

    Google Scholar 

  • Huntley D (1986) Relation between permeability and electrical resistivity in granular aquifers. Ground Water 24(4):466–474

    Article  Google Scholar 

  • Idir YM, Olivier O, Judalet V, Sagot B, Chatellier P (2021) Mapping urban air quality from mobile sensors using spatio-temporal geostatistics. Sensors 21(14):4717. https://doi.org/10.3390/s21144717

    Article  Google Scholar 

  • Jang CS, Liu CW (2004) Geostatistical analysis and conditional simulation for estimating the spatial variability of hydraulic conductivity in the Choushui River alluvial fan, Taiwan. Hydrol Processes 18:1333–1350

    Article  Google Scholar 

  • Jiang L, Bai L, Zhao Y, Cao G, Wang H, Sun Q (2018) Combining InSAR and hydraulic head measurements to estimate aquifer parameters and storage variations of confined aquifer system in Cangzhou, North China Plain. Water Resour Res 54:8234–8252

    Article  Google Scholar 

  • Johnson CD, Nandi A, Joyner TA, Luffman I (2018) Iron and manganese in groundwater: using kriging and GIS to locate high concentrations in Buncombe County, North Carolina. Ground Water 56(1):87–95

    Article  Google Scholar 

  • Kang CG, Li CA, Shao L (2009) Correlation between heavy mineral characteristics of sediments and lithology of source area in Jianghan Plain (in Chinese with English abstract). Quatern Sci 29(2):334–342

    Google Scholar 

  • Keller GV, Frischknecht FC (1970) Electrical methods in geophysical prospecting. Pergamon, New York, 517 pp

    Google Scholar 

  • Kelly WE (1977) Geoelectric sounding for estimating hydraulic conductivity. Ground Water 15(6):420–425

    Article  Google Scholar 

  • Keshtegar B, Mert C, Kisi O (2018) Comparison of four heuristic regression techniques in solar radiation modeling: kriging method vs RSM, MARS and M5 model tree. Renew Sustain Energy Rev 81:330–341

    Article  Google Scholar 

  • Kitanidis PK (1995) Quasi-linear geostatistical theory for inversing. Water Resour Res 31(10):2411–2419

    Article  Google Scholar 

  • Kitanidis PK, Vomvoris EG (1983) A geostatistical approach to the inverse problem in groundwater modeling (steady-state) and one-dimensional simulations. Water Resour Res 20(7):1003–1020

    Google Scholar 

  • Knotters M, Brus DJ, Oude Voshaarb JH (1995) A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations. Geoderma 67(3-4):227–246

    Article  Google Scholar 

  • Kosinsky WK, Kelly WE (1981) Geoelectrical soundings for predicting aquifer properties. Ground Water 19(2):163–171

    Article  Google Scholar 

  • Lapko AV, Lapko VA (2019) Method of fast bandwidth selection in a nonparametric classifier corresponding to the a posteriori probability maximum criterion. Optoelect Instrument Data Process 55:597–605

    Article  Google Scholar 

  • Lee SY, Carle SF, Fogg GE (2007) Geologic heterogeneity and a comparison of two geostatistical models: sequential Gaussian and transition probability-based geostatistical simulation. Advances Water Resour 30:1914–1932

    Article  Google Scholar 

  • Li QC (1985) Comprehensive investigation of Quaternary hydrogeology, engineering geology and environmental geology in Jianghan Plain, Hubei Province: geophysical logging report (in Chinese). National Geological Archive (China). Hubei Institute of Hydrogeology and Engineering Geology, Jingzhou, China

    Google Scholar 

  • Li B, Yeh TCJ (1999) Cokriging estimation of the conductivity field under variably saturated flow conditions. Water Resour Res 35(12):3663–3674

    Article  Google Scholar 

  • Li X, Wen Z, Liang X, Ma T, Chen C (2017) Aquifer Parameters estimation of transient pumping test based on analytical and numerical methods (in Chinese with English abstract). Earth Sci 42(5):743–750

    Google Scholar 

  • Liu HH, Birkholzer J (2012) On the relationship between water flux and hydraulic gradient for unsaturated and saturated clay. Ground Water 475:242–247

    Google Scholar 

  • Liu R, Wu SJ (2011) Review of palaeolimnology in Jianghan Plain (in Chinese with English abstract). World Sci-Tech R & D 33(2):287–290

    Google Scholar 

  • Liu H, Deng SP, Sun K (2014) Optimum design of groundwater level monitoring network in Jianghan Basin (in Chinese with English abstract). Resour Environ Eng 28(5):692–696

    Google Scholar 

  • Liu YH, Zhang Y, Duan XH, Liu H, Yang ZJ, Kong SC, Wang L, Li YY (2019) The influence of tectonic activities on river landforms and human activities in the middle reaches of the Yangtze River (in Chinese with English abstract). J Hebei Geo Univ 42(01):21–16

    Google Scholar 

  • Lukjan A, Chalermyanont T (2017) Assessment of alluvial aquifer heterogeneity and development of stochastic hydrofacies models for the Hat Yai Basin in Southern Thailand. Environ Earth Sci 76:316

    Article  Google Scholar 

  • Luo QH, Tang ZH, He PX (2015) Evaluation on groundwater resources and exploitation potentiality in Honghu City (in Chinese with English abstract). Resour Environ Yangtze Basin 24(Z1):46–52

    Google Scholar 

  • Lv JR, Wang LJ, Gao JF (2011) Modern fluvial sedimentary characteristics of Wuhan Section, Yangtze River (in Chinese with English abstract). Value Eng 25:316–317

    Google Scholar 

  • Mariethoz G, Renard P, Cornaton F, Jaquet O (2009) Truncated plurigaussian simulations to characterize aquifer heterogeneity. Ground Water 47(1):13–24

    Article  Google Scholar 

  • Marsan D, Azimmah A, Adli DP, Muthi’a JM, Yuantoro E, Fatkhan (2017) Aquifer characterization using 2D electrical resistivity imaging in Kidangpananjung, Cililin District, West Java. IOP Conference Series: Earth Environ Sci 62:012014. https://doi.org/10.1088/1755-1315/62/1/012014

    Article  Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–1266

    Article  Google Scholar 

  • Matheron G (1971) The theory of regionalized variable and its applications. Cahiers du Centre de Morphologie, Mathematique de Fointainebleau, Ecole de Mines de Paris, vol No. 5, Fointainebleau, France

  • Mawer C, Parsekian A, Pidlisecky A, Knight R (2016) Characterizing heterogeneity in infiltration rates during managed aquifer recharge. Ground Water 54(6):818–829

    Article  Google Scholar 

  • Medina-Ortega P, Morales-Casique E, Hernández-Espriú A (2019) Sequential indicator simulation for a three-dimensional distribution of hydrofacies in a volcano-sedimentary aquifer in Mexico City. Hydrogeol J 27:2581–2593

    Article  Google Scholar 

  • Modis K, Sideri D (2013) Geostatistical simulation of hydrofacies heterogeneity of the West Thessaly aquifer systems in Greece. Nat Resour Res 22(2):123–138

    Article  Google Scholar 

  • Ni K, Pottie G (2012) Sensor network data fault detection with maximum a posteriori selection and Bayesian modeling. ACM Trans Sens Networks 8(3):1–21

    Article  Google Scholar 

  • Oliver MA, Webster R (2007) Kriging: a method of interpolation for geographical information systems. Int J Geogr Inform Sci 4(3):313–332

    Article  Google Scholar 

  • Ouellon T, Lefebvre R, Marcotte D, Boutin A, Blais V, Parent M (2008) Hydraulic conductivity heterogeneity of a local deltaic aquifer system from the kriged 3D distribution of hydrofacies from borehole logs, Valcartier, Canada. J Hydrol 351:71–86

    Article  Google Scholar 

  • Oyeyemi KD, Olowokere MT, Aizebeokhai AP (2019) Correction to: building 3d lithofacies and depositional models using sequential indicator simulation (SISIM) method: a case history in Western Niger Delta. Arabian J Sci Eng 44:675. https://doi.org/10.1007/s13369-018-3257-4

    Article  Google Scholar 

  • Park E (2010) A multidimensional, generalized coupled Markov chain model for surface and subsurface characterization. Water Resour Res 46:W11509

    Article  Google Scholar 

  • Park E, Elfeki AMM, Song Y, Kim K (2007) Generalized coupled Markov chain model for characterizing categorical variables in soil mapping. Soil Sci Soc Am J 71:909–917

    Article  Google Scholar 

  • Perdomo S, Ainchil JE, Kruse E (2014) Hydraulic parameters estimation from well logging resistivity and geoelectrical measurements. J Appl Geophys 105:50–58

    Article  Google Scholar 

  • Purvance DT, Andricevic R (2000) On electrical hydraulic conductivity correlation in aquifers. Water Resour Res 36(10):2905–2913

    Article  Google Scholar 

  • Quental P, Almeida JA, Simões M (2012) Construction of high-resolution stochastic geological models and optimal upscaling to a simplified layer-type hydrogeological model. Adv Water Resour 39:18–32

    Article  Google Scholar 

  • Rata M, Douaoui A, Larid M, Douaik A (2020) Comparison of geostatistical interpolation methods to map annual rainfall in the Chéliff watershed, Algeria. Theoretic Appl Climatol 141:1009–1024

    Article  Google Scholar 

  • Räty M, Kangas A (2012) Reprint of: Comparison of k-MSN and kriging in local prediction. Forest Ecol Manag 272:51–60

    Article  Google Scholar 

  • Remy N, Boucher A, Wu J (2009) Applied geostatistics with SGeMS: a user’s guide. Cambridge University Press, New York

    Book  Google Scholar 

  • Rezaei A, Mousavi Z (2019) Characterization of land deformation, hydraulic head, and aquifer properties of the Gorgan confined aquifer, Iran, from InSAR observations. J Hydrol 579:124196

    Article  Google Scholar 

  • Seifert D, Jensen JL (1999) Using sequential indicator simulation as a tool in reservoir description: issues and uncertainties. Mathematical Geol 31:527–550

    Article  Google Scholar 

  • Seifert D, Jensen JL (2000) Object and pixel-based reservoir modeling of a braided fluvial reservoir. Math Geol 32:581–603

    Article  Google Scholar 

  • Serrano RP, Guadagnini L, Riva M, Giudici M, Guadagnini A (2014) Impact of two geostatistical hydro-facies simulation strategies on head statistics under non-uniform groundwater flow. J Hydrol 508:343–355

    Article  Google Scholar 

  • Silliman SE, Mantz G (2000) The effect of measurement error on estimating the hydraulic gradient in three dimensions. Ground Water 38(1):114–120

    Article  Google Scholar 

  • Soares A (1998) Sequential indicator simulation with correction for local probabilities. Math Geol 30(6):761–765

    Article  Google Scholar 

  • Strandberg J, de Luna SS, Mateu J (2019) Prediction of spatial functional random processes: comparing functional and spatio-temporal kriging approaches. Stochastic Environ Res Risk Assessment 33:1699–1719

    Article  Google Scholar 

  • Sun NZ, Yeh WWG (1992) A stochastic inverse solution for transient groundwater flow: parameter identification and reliability analysis. Water Resour Res 28(12):3269–3280

    Article  Google Scholar 

  • Sun J, Lin B, Yang H (2015) Development and application of a braided river model with non-uniform sediment transport. Advance Water Resour 81:62–74

    Article  Google Scholar 

  • Theel M, Huggenberger P, Zosseder K (2020) Assessment of the heterogeneity of hydraulic properties in gravelly outwash plains: a regionally scaled sedimentological analysis in the Munich gravel plain, Germany. Hydrogeol J 28:2657–2674

    Article  Google Scholar 

  • Theis CV (1935) The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using groundwater storage. Eos Trans Am Geophys Union 16(2):519–524

    Article  Google Scholar 

  • Tong L, Huang SB, Wang YX, Liu H, Li MJ (2014) Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China. Sci Total Environ 497–498:180–187

    Article  Google Scholar 

  • Tong L, Qin LT, Xie C, Liu H, Wang YX, Guan C, Huang SB (2017) Distribution of antibiotics in alluvial sediment near animal breeding areas at the Jianghan Plain, Central China. Chemosphere 186:100–107

    Article  Google Scholar 

  • Trevisani S, Fabbri P (2010) Geostatistical modeling of a heterogeneous site bordering the Venice Lagoon, Italy. Ground Water 48(4):614–623

    Article  Google Scholar 

  • Troisi S, Fallico C, Starface S, Migliari E (2000) Application of kriging with external drift to estimate hydraulic conductivity from electrical-resistivity data in unconsolidated deposits near Montalto Uffugo, Italy. Hydrogeol J 8:356–367

    Article  Google Scholar 

  • Troldborg L (2004) The influence of conceptual geological model on the simulation of flow and transport in Quaternary aquifer systems. Geological Survey of Denmark and Greenland report, GEUS, Copenhagen

  • Voltz M, Webster R (1990) A comparison of kriging, cubic splines and classification for predicting soil properties from sample information. Eur J Soil Sci 41(3):473–490

    Article  Google Scholar 

  • Wang QL, Li CA (2008) Markov Chain in Quaternary Sedimentary Environment of Jianghan Plain (in Chinese with English abstract). Geol Sci Technol Inform 27(1):38–41

    Google Scholar 

  • Wang QL, Yuan SY, Li CA (2006) Paleoclimate significance of the total organic carbon and organic carbon isotope and magnetic susceptibility of the Jiangling section, Jianghan Plain, Hubei Province (in Chinese with English abstract). Geol Sci Technol Inform 25(4):59–62

    Google Scholar 

  • Wang TT, Zhang WS, Peng H, Zhu QY, Zhang B (2008) Effect of the Water Transfer Project from Yangtze River to Han River on the eco-environment of the middle and lower reaches of Han River (in Chinese with English abstract). South-to-North Water Trans Water Sci Technol 6(1):232–241

    Google Scholar 

  • Wang ZM, Liu ZJ, Liu YY, Fan H (2018) Research on the cumulative superposition effect of water diversion project on ecological environment in the middle and lower reaches of Han River (in Chinese with English abstract). China’s Rural Water Resour Hydropower 3:29–36

    Google Scholar 

  • Wang Z, Zhang F, Zhang XL, Chan NW, Kung H, Zhou XH, Wang YS (2020) Quantitative evaluation of spatial and temporal variation of soil salinization risk using GIS-based geostatistical method. Remote Sens 12(15):2405

    Article  Google Scholar 

  • Weissmann GS, Carle SF, Fogg GE (1999) Three-dimensional hydrofacies modeling based on soil surveys and transition probability geostatistics. Water Resour Res 35:1761–1770

    Article  Google Scholar 

  • Wen Z, Zhan HB, Wang QR, Liang X, Ma T, Chen C (2017) Well hydraulics in pumping tests with exponentially decayed rates of abstraction in confined aquifers. J Hydrol 548:40–45

    Article  Google Scholar 

  • Xia F, Hu BF, Zhu YW, Ji WJ, Chen SC, Xu DY, Shi Z (2020) Improved mapping of potentially toxic elements in soil via integration of multiple data sources and various geostatistical methods. Remote Sens 12(22):3775

    Article  Google Scholar 

  • Xie YY, Li CA, Wang QL, Yin HF (2005) Grain-size characteristics and their environmental significance of jiangling lake sediments in Jianghan Plain (in Chinese with English abstract). J Jilin Univ (Earth Sci Edition) 37(3):570–577

    Google Scholar 

  • Xu W (1995) Stochastic modeling of reservoir lithofacies and petrophysical properties. PhD Thesis, Stanford University, Stanford CA

  • Xue PP, Wen Z, Zhao DJ, Jakada H, Liang X (2021) Determination of hydraulic conductivity and its spatial variability in the Jianghan Plain using a multi-format, multi-method approach. J Hydrol 594:125917

    Article  Google Scholar 

  • Yang HD, Cai SM (1997) The chemical characteristics of lake sediments in Jianghan Plain and their relationship with human activities (in Chinese with English abstract). Sci Geogr Sin 17(4):323–328

    Google Scholar 

  • Yang QX, Tian WX, Li QW, Kong LY (2016) The restrictions of neotectonic movement on the evolution of Quaternary sedimentary environment in Jianghan basin (in Chinese with English abstract). J Geomechanics 22(3):631–641

    Google Scholar 

  • Yeboah-Forson A, Whitman D (2014) Electrical resistivity characterization of anisotropy in the Biscayne Aquifer. Ground Water 52(5):728–736

    Article  Google Scholar 

  • Yeh TCJ, Zhang JQ (1996) A geostatistical inverse method for variably saturated flow in the vadose zone. Water Resour Res 32(9):2757–2766

    Article  Google Scholar 

  • Yu GD (1977) 1/200000 regional hydrogeology survey report (Mianyang H-49-18) (in Chinese). National Geological Archive (China), Hubei Institute of Hydrogeology and Engineering Geology, Jingzhou, China

    Google Scholar 

  • Yu XY, Ding XH, Liang B, Sun Y, Chen M, Gong XX, Lu P, Dong Z, Jiao LB (2012) Structural style and tectonic evolution of the eastern part of Jianghan Basin in the Jianghan Plain Region (in Chinese with English abstract). Geotecton Metallogen 36(2):209–216

    Google Scholar 

  • Zhan DH (1983) A brief analysis on the genetic types and paleogeography of quaternary sediments in western Jianghan Plain (in Chinese with English abstract). J Jianghan Petroleum Institute 2:64–74

    Google Scholar 

  • Zhang MJ, Burbey TJ, Nunes VDS, Borggaard J (2014) A new zonation algorithm with parameter estimation using hydraulic head and subsidence observations. Ground Water 52(4):514–524

    Article  Google Scholar 

  • Zhang L, Hu XS, Guan YT, Xiang JY (2016) Characteristics of Quaternary aquifer system in Jianghan Plain (in Chinese with English abstract). Resour Environ Eng 30(6):895–898

    Google Scholar 

  • Zhang JW, Liang X, Ge Q, Li H, Zhu B (2017) Calculation method about hydraulic conductivity of Quaternary aquitard in Jianghan Plain (in Chinese with English abstract). Earth Sci 42(5):761–770

    Google Scholar 

  • Zhang JW, Liang X, Jin MG, Ma T, Deng YM, Ma B (2019) Identifying the groundwater flow systems in a condensed river-network interfluve between the Han River and Yangtze River (China) using hydrogeochemical indicators. Hydrogeol J 27:2415–2430

    Article  Google Scholar 

  • Zhao DJ (2005) The three-dimensional numerical simulation for groundwater system in Jianghan Plain. MSc Thesis, China University of Geosciences, Wuhan, China

  • Zhou Y, Wang YX, Zwahlen F, Boillat J (2011) Organochlorine pesticide residues in the environment of central Jianghan Plain, China. Environ Forensics 12:106–119

    Article  Google Scholar 

  • Zhou Y, Wang Y, Li Y, Zwahlen F, Boillat J (2012) Hydrogeochemical characteristics of central Jianghan Plain, China. Environ Earth Sci 68(3):765–778

    Article  Google Scholar 

  • Zhu QB (1999) Geological environment problems concerning bridge building on the middle-lower reaches of the Yangtze River (in Chinese with English abstract). Hubei Geol Miner Resour 13(3):47–51

    Google Scholar 

  • Zohdy AAR, Eaton GP, Mabey DR (1974) Application of surface geophysics to ground-water investigations. US Geol Surv Tech Water Resour Invest, chap D1, book 2, USGS, Reston, VA, 116 pp

Download references

Acknowledgements

We would like to thank the editor, (Martin Appold), the associate editor (Francesca Lotti) and two anonymous reviewers for their constructive comments, which helped us improve the quality of the paper.

Funding

This research was partially supported by the National Natural Science Foundation of China (Grant Numbers: 42022018, 41772259, 41830862 and 41521001); the Natural Science Foundation of Hubei Province, China (Grant Numbers: 2018CFA085, 2018CFA028); the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGGC06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Wen.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, P., Wen, Z., Park, E. et al. Geostatistical analysis and hydrofacies simulation for estimating the spatial variability of hydraulic conductivity in the Jianghan Plain, central China. Hydrogeol J 30, 1135–1155 (2022). https://doi.org/10.1007/s10040-022-02495-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02495-4

Keywords

Navigation