Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

E- and Z-trisubstituted macrocyclic alkenes for natural product synthesis and skeletal editing

Abstract

Many therapeutic agents are macrocyclic trisubstituted alkenes but preparation of these structures is typically inefficient and non-selective. A possible solution would entail catalytic macrocyclic ring-closing metathesis, but these transformations require high catalyst loading, conformationally rigid precursors and are often low yielding and/or non-stereoselective. Here we introduce a ring-closing metathesis strategy for synthesis of trisubstituted macrocyclic olefins in either stereoisomeric form, regardless of the level of entropic assistance. The goal was achieved by addressing several unexpected difficulties, including complications arising from pre-ring-closing metathesis alkene isomerization. The power of the method is highlighted by two examples. The first is the near-complete reversal of substrate-controlled selectivity in the formation of a macrolactam related to an antifungal natural product. The other is a late-stage stereoselective generation of an E-trisubstituted alkene in a 24-membered ring, en route to the cytotoxic natural product dolabelide C.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Unresolved problems and challenges in MRCM.
Fig. 2: Challenges associated with designing a stereoretentive MRCM that affords a trisubstituted alkene.
Fig. 3: Unexpected complications and mechanism-guided solutions.
Fig. 4: Reversing substrate-controlled selectivity and late-stage stereoretentive MRCM in total synthesis of dolabelide C.

Similar content being viewed by others

Data availability

All data in support of the findings of this study are available within the Article and its Supplementary Information.

References

  1. Hoveyda, A. H. & Zhugralin, A. R. The remarkable metal-catalysed olefin metathesis. Nature 450, 243–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Hughes, D., Wheeler, P. & Ene, D. Olefin metathesis in drug discovery and development—examples from recent patent literature. Org. Process Res. Dev. 21, 1938–1962 (2017).

    Article  CAS  Google Scholar 

  3. Yu, M., Lou, S. & Gonzalez-Bobes, F. Ring-closing metathesis in pharmaceutical development: fundamentals, applications, and future directions. Org. Process Res. Dev. 22, 918–946 (2018).

    Article  CAS  Google Scholar 

  4. Nicolaou, K. C., Montagnon, T., Vassilikogiannakis, G. & Mathison, C. J. N. The total synthesis of coleophomones B, C, and D. J. Am. Chem. Soc. 127, 8872–8888 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Y. et al. Control of olefin geometry in macrocyclic ring-closing metathesis using a removable silyl group. J. Am. Chem. Soc. 133, 9196–9199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anketell, M. J., Sharrock, T. M. & Paterson, I. A unified total synthesis of the actinallolides, a family of anti-trypanosomal macrolides. Angew. Chem. Int. Ed. 59, 1572–1576 (2020).

    Article  CAS  Google Scholar 

  7. Wasser, P. & Altmann, K.-H. An RCM-based total synthesis of the antibiotic disciformycin B. Angew. Chem. Int. Ed. 59, 17393–17397 (2020).

    Article  CAS  Google Scholar 

  8. Smith, A. B. III, Mesaros, E. F. & Meyer, E. A. Total synthesis of (−)-kendomycin exploiting a Petasis–Ferrier rearrangement/ring-closing metathesis synthetic strategy. J. Am. Chem. Soc. 127, 6948–6949 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Toelle, N., Weinstabl, H., Gaich, T. & Mulzer, J. Light-mediated total synthesis of 17-deoxyprovidencin. Angew. Chem. Int. Ed. 53, 3859–3862 (2014).

    Article  CAS  Google Scholar 

  10. Fuwa, H., Saito, A. & Sasaki, M. A concise total synthesis of (+)-neopeltolide. Angew. Chem. Int. Ed. 49, 3041–3044 (2010).

    Article  CAS  Google Scholar 

  11. Terayama, N. et al. Total synthesis and structural revision of sekothrixide. Org. Lett. 16, 2794–2797 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Matsuzawa, A., Shiraiwa, J., Kasamatsu, A. & Sugita, K. Enantioselective, protecting-group-free total synthesis of boscartin F. Org. Lett. 20, 1031–1033 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Fürstner, A. Teaching metathesis ‘simple’ stereochemistry. Science 341, 1229713 (2013).

    Article  PubMed  CAS  Google Scholar 

  14. Hoveyda, A. H., Khan, R. K. M., Torker, S. & Malcolmson, S. J. in Handbook of Metathesis, Vol. 2 (eds Grubbs, R. H. & O’Leary, D. J.) 503–562 (Wiley-VCH, 2015).

  15. Montgomery, T. P., Ahmed, T. S. & Grubbs, R. H. Stereoretentive olefin metathesis: an avenue to kinetic selectivity. Angew. Chem. Int. Ed. 56, 11024–11036 (2017).

    Article  CAS  Google Scholar 

  16. Nguyen, T. T. et al. Synthesis of E- and Z-tri-substituted alkenes by catalytic cross-metathesis. Nature 552, 347–354 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu, C. et al. Synthesis of E- and Z-trisubstituted allylic alcohols and ethers by kinetically controlled cross-metathesis with a Ru catechothiolate complex. J. Am. Chem. Soc. 139, 15640–15643 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Mu, Y. et al. E- and Z-, di- and trisubstituted alkenyl nitriles through catalytic cross-metathesis. Nat. Chem. 11, 478–487 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rummelt, S. M., Preindl, J., Sommer, H. & Fürstner, A. Selective formation of a trisubstituted alkene motif by trans-hydrostannation/Stille coupling: application to the total synthesis and late-stage modification of 5,6-dihydrocineromycin B. Angew. Chem. Int. Ed. 54, 6241–6245 (2015).

    Article  CAS  Google Scholar 

  20. Houri, A. F., Xu, Z., Cogan, D. A. & Hoveyda, A. H. Cascade catalysis in synthesis. An enantioselective route to Sch 38516 (and fluvirucin B1) aglycon macrolactam. J. Am. Chem. Soc. 117, 2943–2944 (1995).

    Article  CAS  Google Scholar 

  21. Llàcer, E., Urpì, F. & Vilarassa, J. Efficient approach to fluvirucins B2–B5, Sch 38518, and Sch 39185. First synthesis of their aglycon, via CM and RCM reactions. Org. Lett. 11, 3198–3201 (2009).

    Article  PubMed  CAS  Google Scholar 

  22. Guignard, G. et al. Enantioselective total synthesis of fluvirucinin B1. Org. Lett. 18, 1788–1791 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, C., Haeffner, F., Schrock, R. R. & Hoveyda, A. H. Molybdenum-based complexes with two aryloxides and a pentafluoroimido ligand: catalysts for efficient Z-selective synthesis of a macrocyclic trisubstituted alkene by ring-closing metathesis. Angew. Chem. Int. Ed. 52, 1939–1943 (2013).

    Article  CAS  Google Scholar 

  24. Meng, D. et al. Total syntheses of epothilones A and B. J. Am. Chem. Soc. 119, 10073–10092 (1997).

    Article  CAS  Google Scholar 

  25. Wang, C. et al. Efficient and selective formation of macrocyclic disubstituted Z alkenes by ring-closing metathesis (RCM) reactions catalyzed by Mo- or W-based monoaryloxide pyrrolide (MAP) complexes: applications to total syntheses of epilachnene, Yuzu lactone, anbrettolide, epothiolone C, and Nakadomarin A. Chem. Eur. J. 19, 2726–2740 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Shen, X. et al. Kinetically E-selective macrocyclic ring-closing metathesis. Nature 541, 380–386 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, C., Shen, X. & Hoveyda, A. H. In situ methylene capping: a general strategy for efficient stereoretentive catalytic olefin metathesis. The concept, methodological implications, and applications to synthesis of biologically active compounds. J. Am. Chem. Soc. 139, 10919–10928 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Ahmad, T. S. & Grubbs, R. H. A highly efficient synthesis of Z-macrocycles using stereoretentive, ruthenium-based metathesis catalysts. Angew. Chem. Int. Ed. 36, 11213–11216 (2017).

    Article  CAS  Google Scholar 

  29. Xu, Z. et al. Applications of Zr-catalyzed carbomagnesation and Mo-catalyzed macrocyclic ring-closing metathesis in asymmetric synthesis. Enantioselective total synthesis of Sch 38516 (fluvirucin B1). J. Am. Chem. Soc. 119, 10302–10316 (1997).

    Article  CAS  Google Scholar 

  30. Fürstner, A., Thiel, O. R. & Ackermann, L. Exploiting the reversibility of olefin metathesis. Syntheses of macrocyclic trisubstituted alkenes and (R,R)-(−)-pyrenophorin. Org. Lett. 3, 449–451 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. Sytniczuk, A., Forcher, G., Grotjahn, D. B. & Grela, K. Sequential alkene isomerization and ring-closing metathesis in production of macrocyclic musks from biomass. Chem. Eur. J. 24, 10403–10408 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Sytniczuk, A., Milewski, M., Kajetanowicz, A. & Grela, K. Preparation of macrocyclic musks via olefin metathesis: comparison with classical syntheses and recent advances. Russ. Chem. Rev. 89, 469–490 (2020).

    Article  CAS  Google Scholar 

  33. Peng, L. F. et al. Syntheses of aminoalcohol-derived macrocycles leading to a small-molecule binder to and inhibitor of Sonic Hedgehog. Bioorg. Med. Chem. Lett. 19, 6319–6325 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yi, S., Varun, B. B., Choi, Y. & Park, S. B. A brief overview of two major strategies in diversity-oriented synthesis: build/couple/pair and ring-distortion. Front Chem. 6, 507 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Mallinson, J. & Collins, I. Macrocycles in new drug discovery. Future Med. Chem. 4, 1409–1438 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Ojika, M., Nagoya, T. & Yamada, K. Dolabelides A and B, cytotoxic 22-membered macrolides isolated from the sea hare Dolabella auricularia. Tetrahedron Lett. 36, 7491–7494 (1995).

    Article  CAS  Google Scholar 

  38. Suenaga, K. et al. Dolabelides C and D, cytotoxic macrolides isolated from the sea hare Dolabella auricularia. J. Nat. Prod. 60, 155–157 (1997).

    Article  CAS  Google Scholar 

  39. Hanson, P. R. et al. Total synthesis of dolabelide C: a phosphate-mediated approach. J. Org. Chem. 76, 4358–4370 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Park, P. K., O’Malley, S. J., Schmidt, D. R. & Leighton, J. L. Total synthesis of dolabelide D. J. Am. Chem. Soc. 128, 2796–2797 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grimaud, L., de Mesmay, R. & Prunet, J. Diastereoselective synthesis of protected syn 1,3-diols: prepration of the C16–C24 portion of dolabelides. Org. Lett. 4, 419–421 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Tiniakos, A. F., Wittman, S., Audic, A. & Prunet, J. Novel synthesis of trisubstituted olefins for the preparation of the C16–C30 fragment of dolabelide C. Org. Lett. 21, 589–592 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Nguyen, T. T. et al. Kinetically controlled E-selective catalytic olefin metathesis. Science 352, 569–575 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hoveyda, A. H. et al. Impact of ethylene on efficiency and stereocontrol in olefin metathesis: when to add it, when to remove it, and when to avoid it. Angew. Chem. Int. Ed. 59, 22324–22348 (2020).

    Article  CAS  Google Scholar 

  45. Meek, S. J. et al. The significance of degenerate processes to enantioselective olefin metathesis reactions promoted by stereogenic-at-Mo complexes. J. Am. Chem. Soc. 131, 16407–16409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schrock, R. R. & Hoveyda, A. H. Molybdenum and tungsten imido alkylidene complexes as efficient olefin-metathesis catalysts. Angew. Chem. Int. Ed. 42, 4592–4633 (2003).

    Article  CAS  Google Scholar 

  47. Girvin, Z. C., Andrews, M. K., Liu, X. & Gellman, S. H. Foldamer-templated catalysis of macrocycle formation. Science 366, 1528–1531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ferreira, M. A. B. et al. Noncovalent interactions drive the efficiency of molybdenum imido alkylidene catalysts for olefin metathesis. J. Am. Chem. Soc. 141, 10788–10800 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Chou, T.-C. et al. Design and total synthesis of a superior family of epothilone analogues, which eliminate xenograft tumors to a nonrelapsable state. Angew. Chem. Int. Ed. 42, 4762–4767 (2003).

    Article  CAS  Google Scholar 

  50. Paterson, I. et al. A practical synthesis of (+)-discodermolide and analogues: fragment union by complex aldol reactions. J. Am. Chem. Soc. 123, 9535–9544 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Roethle, P. A. & Trauner, D. Expedient synthesis of (±)-bipinnatin J. Org. Lett. 8, 345–347 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Yu, X. & Sun, D. Macrocyclic drugs and synthetic methodologies toward macrocycles. Molecules 18, 6230–6268 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Parenty, A., Moreau, X., Niel, G. & Campagne, J.-M. Update 1 of: macrolactonizations in the total synthesis of natural products. Chem. Rev. 113, PR1–PR40 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Institutes of Health (GM-130395). F.W.W.H. was supported as a Deutsche Forschungsgemeinschaft postdoctoral fellow. K.E.L. was supported by a Complex Systems Chemistry (CSC) graduate fellowship funded by the French National Research Agency (CSC-IGS ANR-17-EURE-0016). We thank T. Koengeter, C. Qin and S. Xu for helpful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Y.M., F.W.W.H., F.R. and E.C.Y. developed the method and performed the dolabelide C total synthesis. Y.M., F.R. and K.E.L. carried out the total synthesis of the E-alkene isomer related to fluvirucin B1. The molybdenum complexes used in this study were designed and developed as part of an ongoing collaboration between the research groups of A.H.H. and R.R.S. The approach was conceived by A.H.H. and F.R. The investigations were directed by A.H.H. and A.H.H. composed the manuscript with the other authors suggesting revisions.

Corresponding authors

Correspondence to Filippo Romiti or Amir H. Hoveyda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks N. Lemcoff, Damian Young and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

The file contains an extended bibliography regarding preparation of trisubstituted macrocyclic natural products. It also contains the experimental procedures for preparation of organometallic complexes, substrates, reagents and products and all the corresponding analytical/characterization data (tabulated and reproductions of 1H and 13C NMR spectra).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, Y., Hartrampf, F.W.W., Yu, E.C. et al. E- and Z-trisubstituted macrocyclic alkenes for natural product synthesis and skeletal editing. Nat. Chem. 14, 640–649 (2022). https://doi.org/10.1038/s41557-022-00935-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00935-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing