Skip to main content

Advertisement

Log in

Porphyry-epithermal Cu-Mo-Au–Ag mineralization in the Nakhodka ore field, Baimka Trend, Chukotka, Russia: a geological, mineralogical, and geochemical perspective

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Nakhodka ore field (NOF) is situated in the Baimka Trend, Chukotka, Russia, and comprises the Vesenny epithermal Au–Ag, and Malysh, Nakhodka, Vesenny III, and Pryamoy porphyry Cu-Au ± Mo deposits. Porphyry and epithermal mineralization of the NOF are hosted by Early Cretaceous diorite and monzonite intrusions, which are dated at 139–141 Ma (U–Pb zircon). The NOF mineralization is structurally controlled. The prevailing stress field during the evolution in the Baimka dextral shear zone (also known as Baimka Trend) has led to the formation of extensional and strike-slip structures that control distinct zones with strong quartz-sericite alteration and sheeted high-grade quartz–sulfide veining; characteristics that are similar to the world-class Peschanka porphyry Cu-Au deposit located about 20 km to the NW of the NOF. Four types of hydrothermal alteration are documented in the NOF: (1) potassic, (2) propylitic, (3) quartz-sericite, and more rarely (4) argillic. Two phases of porphyry-style mineralization are distinguished: (1) early-stage quartz-magnetite veining associated with potassic alteration and (2) sheeted quartz-sulfide (bornite, chalcopyrite, molybdenite, pyrite) veining that is spatially associated with a strong quartz-sericite alteration assemblage. Epithermal Au–Ag mineralization belongs to the intermediate-sulfidation type and consists of gold-bearing polymetallic quartz-dolomite ± rhodochrosite veins and veinlets. The NOF is defined by a distinct geochemical zonation. Geophysical data show that the high-grade stockwork zones at the Vesenny III porphyry Cu-Au deposit are defined by pronounced magnetic anomalies reflecting abundant hydrothermal magnetite veining, while the Vesenny epithermal Au–Ag deposit is defined by a strong negative magnetic anomaly due to strong silicification and magnetite-destructive quartz-sericite to argillic alteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akinin VV, Miller EL (2011) Evolution of calc-alkaline magmas of the Okhotsk-Chukotka volcanic belt. Petrology 19:237–277. https://doi.org/10.1134/s0869591111020020

    Article  Google Scholar 

  • AMC Consultants Pty. Ltd. (2020) Oyu Tolgoi 2020 technical report. https://turquoisehill.com/turquoise-hill/technical-reports/default.aspx. Accessed 15 November 2021

  • Baker T, Bickford D, Juras S, Lewis P, Oztas Y, Ross K, Tukac A, Rabayrol F, Miskovic A, Friedman R, Creaser RA, Spikings R (2016) The geology of the Kişladaĝ, porphyry gold deposit, Turkey. Econ Geol Spec Publ 19:57–84

    Google Scholar 

  • Chitalin AF (2019a) Structural paragenesis and ore mineralization of the Baimskaya shear zone, Western Chukotka. In: Russian Tectonophysics. On the occasion of the 100th anniversary of M.V. Gzovsky. RIO KSC RAS, Apatity, pp. 333–349 [in Russian]

  • Chitalin AF (2019b) Geological-structural interpretation of geophysical and geochemical anomalies of the Baimskaya Ore Zone, Western Chukotka. Abstracts, International Geological-Geophysical Conference “GeoEurasia 2019b”, Moscow, pp. 961–966 [in Russian]

  • Chitalin AF (2021) The structure of stockworks of Porphyry Copper systems. Abstracts “GeoEurasia 2021” International Geological and Geophysical Conference. pp 171–176 [in Russian]

  • Chitalin A, Fomichev E, Usenko V, Agapitov D, Shtengelov A (2012) Structural model of Peschanka porphyry Cu-Au-Mo deposit, Western Chukotka, Russia. Poster, Structural Geology and Resources-2012. https://igeotech.ru/wp-content/uploads/2020/04/a.-chitalin-structural-model-of-peschanka-porphyry-cu-au-mo_abstractproofs.pdf. Accessed 15 November 2021

  • Chitalin AF, Usenko VV, Fomichev EV (2013) The Baimka ore zone – a cluster of large base and precious metal deposits in the at the west of the Chukchi Autonomous Okrug. Mineral Resour Russ Econ Manag 6:68–73 [in Russian]

  • Chitalin AF, Nikolaev YuN, Shtengelov AR, Fomichev EV, Usenko VV, Shatnov VY, Baksheev IA, Sidorina YN, Djedjeya GT, Kalko IA, Apletalin AV, Okhapkina EY, Nagornaya EV, Marustchenko LI, Kuzkin AC (2014) Exploration work in Baimka licensed area. Unpubl Report [in Russian]

  • Chitalin AF, Nikolaev YuN, Baksheev IA, Prokofiev VYu, Fomichev EV, Usenko VV, Nagornay EV, Marushchenko LI, Sidorina YuN, Dzhedzheya GT (2016) Porphyry-epithermal systems of the Baimka Ore Zone, Western Chukotka. Smirnovskiy sbornik-2016, Maks-Press, Moscow, pp 82–115 [in Russian]

  • Chitalin AF, Agapitov DD, Shtengelov AR, Usenko VV, Fomichev EV (2019) The perspective for discovery of large-tonnage gold-silver deposit on the Vesenniy deposit of the Baimskaya Ore Zone, Western Chukotka. Mineral Resources of Russia: Economics and Management 2:22–29 [in Russian]

    Google Scholar 

  • Chitalin AF, Grishin EM, Usenko VV, Fomichev EV, Chikatueva VY, Sivkov DV (2020) Structure and origin of ore stockworks of large copper, gold and tin deposits in the Kolyma-Chukotka region. Abstracts, “GeoEurasia 2020” International Geological and Geophysical Conference, Moscow. pp 27–30 [in Russian]

  • Chitalin AF, Baksheev IA, Nikolaev YN, Djedjeya GT, Khabibullina YN, Müller D (2022) Porphyry Cu-Au±Mo mineralization hosted by potassic igneous rocks: implications from the giant Peschanka porphyry deposit, Baimka Trend (North-East Siberia, Russia). Geol Soc Lond Spec Publ 513(1):323

    Article  Google Scholar 

  • Corbett GJ, Leach TM (1998) Southwest Pacific gold-copper systems: structure, alteration and mineralization. Soc Econ Geol Spec Publ 6:1–272

    Google Scholar 

  • Crane D, Kavalieris I (2012) Geologic overview of the Oyu Tolgoi porphyry Cu-Au-Mo deposits, Mongolia. Soc Econ Geol Spec Publ 16:187–213

    Google Scholar 

  • Franchini M, Impiccini A, Lentz DR, Rios FJ, O’Leary S, Pons J, Schalamuk AI (2011) Porphyry to epithermal transition in the Agua Rica polymetallic deposit, Catamarca, Argentina: an integrated petrologic analysis of ore and alteration paragenesis. Ore Geol Rev 41:49–74. https://doi.org/10.1016/j.oregeorev.2011.06.010

    Article  Google Scholar 

  • Franchini M, McFarlane C, Maydagan L, Reiche M, Lentz DR, Meinert L, Bouhier V (2015) Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: textural features and metal zoning at the porphyry to epithermal transition. Ore Geol Rev 66:366–387. https://doi.org/10.1016/j.oregeorev.2014.10.022

    Article  Google Scholar 

  • Ghaffari H, Morrison RS, de Ruijeter MA, Živković A, Hantelmann T, Ramsey D, Cowie S (2011) Preliminary assessment of the Pebble Project, Southwest Alaska. https://pebblewatch.com/wp-content/uploads/2017/05/Pebble_Project_Preliminary-Assessment-Technical-Report_February-17-2011.pdf. Accessed 15 November 2021

  • Gow PA, Walshe JL (2005) The role of preexisting geologic architecture in the formation of giant porphyry–related Cu–Au deposits: examples from New Guinea and Chile. Econ Geol 100:819–833

    Article  Google Scholar 

  • Groves DI, Santosh M, Müller D, Zhang L, Deng J, Yang LQ, Wang QF (2022) Mineral systems: their advantages in terms of developing holistic genetic models and for target generation in global mineral exploration. Geosyst Geoenviron 1:1–26. https://doi.org/10.1016/j.geogeo.2021.09.001

    Article  Google Scholar 

  • Kara TV, Tikhomirov PL, Demin AD (2019) New data on the age of magmatic events in the Oloy fold zone, Western Chukotka: evidence from U-Pb zircon dating. Doklady Earth Sci 489:1277–1280

    Article  Google Scholar 

  • KAZ Minerals (2018) Kaz Minerals press release 2018: www.kazminerals.com/our-business/baimskaya. Accessed 15 November 2021

  • Kirwin DJ, Forster CN, Kavalieris I, Crane D, Orssich C, Panther C, Garamjav D, Munkhbat TO, Niislelkhuu G (2005) The Oyu Tolgoi copper–gold porphyry deposits, south Gobi, Mongolia. In: Seltmann R, Gerel O, Kirwin DJ (eds) Geodynamics and metallogeny of Mongolia with a special emphasis on copper and gold deposits. SEG-IAGOD field trip, 14–16 August 2005, 8th biennial SGA meeting. IAGOD Guidebook Series 11. CERCAMS/NHM, London, pp 155–168

  • Kotova MS, Nagornaya EV, Anosova MO, Kostitsyn YuA, Baksheev IA, Nikolaev YuN, Kalko IA (2012) Dating of wall-rock alteration processes and ore-bearing granitoids of the Nakhodka ore field, Western Chukchi Peninsula. Abstracts, Geochronogical isotopic systems, methods of their study, and chronology of geological processes. V Russian Conference in Geochronogy, Moscow, 181–184 [in Russian]

  • Kwan K, Müller D (2020) Mount Milligan alkalic porphyry Au-Cu deposit, British Columbia, Canada, and its AEM and AIP signatures: implications for mineral exploration in covered terrains. J Appl Geophys 180:104131. https://doi.org/10.1016/j.jappgeo.2020.104131

    Article  Google Scholar 

  • Landtwing MR (1998) Breccias in the Cu-Mo-Au prospect of Agua Rica, Argentina: evolution of a magmatic-hydrothermal system during progressive unroofing. Unpubl. M.Sc. Thesis, ETH Zürich, Switzerland. https://doi.org/10.3929/ethz-b-000408390

  • Large SJE, von Quadt A, Wotzlaw JF, Guillong M, Heinrich CA (2018) Magma evolution leading to porphyry Cu-Au mineralization at the Ok Tedi deposit, Papua New Guinea: trace element geochemistry and high-precision geochronology of igneous zircon. Econ Geol 113:39–61

    Article  Google Scholar 

  • Loader MA, Wilkinson JJ, Armstrong RN (2017) The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth Planet Sci Lett 472:107–119. https://doi.org/10.1016/j.epsl.2017.05.010

    Article  Google Scholar 

  • Marushchenko LI, Baksheev IA, Nagornaya EV, Chitalin AF, Nikolaev YuN, Kalko IA, Prokofiev VYu (2015) Quartz-sericite and argillic alterations at the Peschanka Cu-Mo-Au deposit, Chukchi Peninsula, Russia. Geol Ore Deposits 57:213–225. https://doi.org/10.1134/S1075701515030034

    Article  Google Scholar 

  • Marushchenko LI, Baksheev IA, Nagornaya EV, Chitalin AF, Nikolaev YuN, Vlasov EA (2018) Compositional evolution of the tetrahedrite solid solution in porphyry-epithermal system: a case study of the Baimka Cu-Mo-Au trend, Chukchi Peninsula, Russia. Ore Geol Rev 103:21–37. https://doi.org/10.1016/j.oregeorev.2017.01.018

    Article  Google Scholar 

  • Marquez-Zavalia MF, Heinrich CA (2016) Fluid evolution in a volcanic-hosted epithermal carbonate-base-metal-gold vein system: Alto de la Blenda, Farallon Negro, Argentina. Miner Deposita 51:873–902. https://doi.org/10.1007/s00126-016-0639-y

    Article  Google Scholar 

  • Masterman GJ, Cooke DR, Berry RF, Walshe JL, Lee AW, Clark AH (2005) Fluid chemistry, structural setting and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi district, northern Chile. Econ Geol 100:835–862

    Article  Google Scholar 

  • Matteini M, Mazzuoli R, Omarini R, Cas R, Maas R (2002) The geochemical variations of the upper Cenozoic volcanism along the Calama-Olacapato-El Toro transversal fault system in the central Andes (24-S): petrogenetic and geodynamic implications. Tectonophysics 345:211–227

    Article  Google Scholar 

  • Maydagan L, Zattin M, Mpodozis C, Selby D, Franchini M, Dimieri L (2020) Apatite (U–Th)/He thermochronology and Re–Os ages in the Altar region, Central Andes (31°30′S), Main Cordillera of San Juan, Argentina: implications of rapid exhumation in the porphyry Cu (Au) metal endowment and regional tectonics. Miner Deposita 55:1365–1384

    Article  Google Scholar 

  • Müller D, Forrestal P (1998) The shoshonite porphyry Cu-Au association at Bajo de la Alumbrera, Catamarca Province, Argentina. Miner Petrol 64:47–64. https://doi.org/10.1007/BF01226563

    Article  Google Scholar 

  • Müller D, Groves DI (2019) Potassic igneous rocks and associated gold-copper mineralization. 5th edn. Mineral Resource Reviews. Springer Nature, Cham, 398pp

  • Müller D, Rock NMS, Groves DI (1992) Geochemical discrimination between shoshonitic and potassic volcanic rocks from different tectonic settings: a pilot study. Miner Petrol 46:259–289. https://doi.org/10.1007/BF01173568

    Article  Google Scholar 

  • Nagornaya EV (2013) Mineralogy and zoning of the Nakhodka Cu-Mo-porphyry field, Chukchi Peninsula. Ph.D. Dissertation, Lomonosov Moscow State University, Moscow [in Russian]

  • Nagornaya EV, Baksheev IA, Bryzgalov IA, Yapaskurt VO (2012) Minerals of the Au–Ag–Pb–Te–Se–S system of porphyry–copper–molybdenum deposits from the Nakhodka ore field, Chukchi Peninsula, Russia, Moscow. Univ Geol Bull 67:233–239. https://doi.org/10.3103/S014587521040072

    Article  Google Scholar 

  • Nagornaya EV, Baksheev IA, Tikhomirov PL, Selby D (2020) The latest Aptian / earliest Albian age of the Kekura gold deposit, Western Chukotka, Russia: implications for mineralization associated with post-collisional magmatism. Miner Deposita 55:1255–1262

    Article  Google Scholar 

  • Nikolaev YuN, Baksheev IA, Prokofiev VYu, Nagornaya EV, Marushchenko LI, Sidorina YuN, Chitalin AF, Kal’ko IA (2016) Gold–silver mineralization in porphyry–epithermal systems of the Baimka trend, Western Chukchi Peninsula, Russia. Geol Ore Deposits 58:319–345. https://doi.org/10.1134/S107570151604005X

    Article  Google Scholar 

  • Nokleberg WJ, Parfenov LM, Monger JWH, Norton IO, Khanchuk AI, Stone DB, Scotese CR, Scoll DW, Fujita K (2000) Phanerozoic tectonic evolution of the Circum-North Pacific. US Geol Surv Prof Pap 1626:1–122. https://doi.org/10.3133/pp1626

    Article  Google Scholar 

  • Olson N, Dilles JH, Kent AJR, Lang JR (2017) Geochemistry of the Cretaceous Kaskanak batholith and genesis of the Pebble porphyry Cu-Au-Mo deposit, southwest Alaska. Amer Miner 102:1597–1621. https://doi.org/10.2138/am-2017-6053

    Article  Google Scholar 

  • Ossandón CG, Fréraut CR, Gustafson LB, Lindsay DD, Zentilli M (2001) Geology of the Chuquicamata mine: a progress report. Econ Geol 96:249–270

    Article  Google Scholar 

  • Parfenov LM (1991) Tectonics of the Verkhoyansk-Kolyma Mesozoides in the context of plate tectonics. Tectonophysics 199:319–342. https://doi.org/10.1016/0040-1951(91)90177-T

    Article  Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. Wiley, New York, pp 525–548

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 24:956–983

    Article  Google Scholar 

  • Pollard PJ, Taylor RG (2001) Paragenesis of the Grasberg Cu-Au deposit, Irian Jaya, Indonesia: results from logging Section 13. Miner Deposita 37:117–136. https://doi.org/10.1007/s00126-001-0234-7

    Article  Google Scholar 

  • Pollard PJ, Taylor RG, Peters L (2005) Ages of intrusion, alteration and mineralization at the Grasberg Cu-Au deposit, Papua, Indonesia. Econ Geol 100:1005–1020

    Article  Google Scholar 

  • Richards JP (2011) High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: just add water. Econ Geol 106:1075–1081. https://doi.org/10.2113/econgeo.106.7.1075

    Article  Google Scholar 

  • Richards JP, Razavi AM, Spell TL, Locock A, Sholeh A, Aghazadeh M (2018) Magmatic evolution and porphyry–epithermal mineralization in the Taftan volcanic complex, southeastern Iran. Ore Geol Rev 95:258–279. https://doi.org/10.1016/j.oregeorev.2018.02.018

    Article  Google Scholar 

  • Sidorina YN (2015) The geochemical zoning of the Nakhodka porphyry-epithermal system (West Chukotka). Moscow Univ Geol Bull 70:152–158. https://doi.org/10.3103/S0145875215020088

    Article  Google Scholar 

  • Sillitoe RH, Hedenquist JW (2003) Linkages between volcanotectonic settings, ore- fluid compositions, and epithermal precious metal deposits. In: Simmons SF, Graham I (eds) Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes Within the Earth. Soc Econ Geol Spec Publ 10: 315–343

  • Sillitoe RH, Devine FAM, Sanguinetti MI, Friedman RM (2019) Geology of the Josemaría porphyry copper-gold deposit, Argentina: formation, exhumation and burial in two million years. Econ Geol 114:407–425

    Article  Google Scholar 

  • Sokolov SD (2010) Tectonics of Northeast Asia: an overview. Geotectonics 44:493–509. https://doi.org/10.1134/S001685211006004X

    Article  Google Scholar 

  • Soloviev SG (2014) The metallogeny of shoshonitic magmatism, vol 1. Nauchny Mir, Moscow [in Russian]

    Google Scholar 

  • Tikhomirov PL, Kalinina EA, Moriguti T, Makishima A, Kobayashi K, Cherepanova IY, Nakamura E (2012) The Cretaceous Okhotsk-Chukotka volcanic belt (NE Russia): geology, geochronology, magma output rates, and implications on the genesis of silicic LIPs. J Volcanol Geotherm Res 222:14–32. https://doi.org/10.1016/j.jvolgeores.2011.12.011

    Article  Google Scholar 

  • Tikhomirov PL, Prokof’ev VYu, Kal’ko IA, Apletalin AV, Nikolaev YuN, Kobayashi K, Nakamura E (2017) Post-collisional magmatism of Western Chukotka and Early Cretaceous tectonic rearrangement in Northeastern Asia. Geotectonics 51:131–151. https://doi.org/10.1134/S0016852117020054

    Article  Google Scholar 

  • Volchkov AG, Sokirkin GI, Shishakov VB (1982) Geological setting and ore composition of the Anyuiskoe porphyry copper deposit. Geol Rudn Mestorozhd 24(4):89–94 [in Russian]

  • Von Quadt A, Erni M, Martinek K, Moll M, Peytcheva I, Heinrich CA (2011) Zircon crystallization and the lifetimes of ore-forming magmatic hydrothermal systems. Geology 39:731–734

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343. https://doi.org/10.1016/0009-2541(77)90057-2

    Article  Google Scholar 

Download references

Acknowledgements

We would like to sincerely thank Bernd Lehmann, Reimar Seltmann, and Andreas Dietrich for reading the manuscript, for correcting it, and for their constructive comments and suggestions which resulted in greatly improving it.

Funding

The results of section “Geochemical composition of the Nakhodka host intrusions” were obtained within the Russian Science Foundation grant (project no. 19–17-00200). The work by Ekaterina V. Nagornaya was supported by Federal budget (project no. 0137–2019-0012 “Petrology, geochemistry, and geodynamics of the formation and evolution of the oceanic and continental lithospheres”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan A. Baksheev.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Editorial handling: B. Lehmann

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitalin, A.F., Baksheev, I.A., Nikolaev, Y.N. et al. Porphyry-epithermal Cu-Mo-Au–Ag mineralization in the Nakhodka ore field, Baimka Trend, Chukotka, Russia: a geological, mineralogical, and geochemical perspective. Miner Deposita 58, 287–306 (2023). https://doi.org/10.1007/s00126-022-01122-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-022-01122-2

Keywords

Navigation