Skip to main content
Log in

Quench Factor Analysis for Predicting Precipitation Hardening of Sheets from Aluminum Alloy V-1341 of the Al – Mg – Si System

  • Published:
Metal Science and Heat Treatment Aims and scope

Prediction of precipitation hardening of sheets from aluminum alloy V-1341 of the Al – Mg – Si system with the help of mathematical modeling is considered. Special features of decomposition of the supersaturated solid solution (SSS) of the alloy are investigated by thermal analysis and electron microscopy with the aim to determine the unknown parameters of the mathematical model. It is shown that the method suggested makes it possible to predict reliably the precipitation hardening of sheets depending on the rate of the quenching cooling. Computation is used to plot a diagram of isothermal phase transformations in decomposition of the SSS of the alloy and a temperature-time-property diagram applicable for selection of modes of quenching cooling for articles from alloy V-1341.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.

Similar content being viewed by others

References

  1. N. I. Kolobnev, L. B. Ber, and S. P. Tsukrov, Heat Treatment of deformable Aluminum Alloys [in Russian], NP “APRAL,” Moscow (2020), 52 p.

  2. V. G. Davydov, V. V, Zakharov, E. D. Zakharov, and I. I. Novikov, Diagrams of Isothermal Decomposition of Solution in Aluminum Alloys, A Reference Book [in Russian], Metallurgiya, Moscow (1973), 152 p.

  3. J. T. Staley, “Quench factor analysis of aluminum alloys,” Mater. Sci. Technol., 3(11), 923 – 935 (1987).

    Article  CAS  Google Scholar 

  4. P. M. Kavalco, “Quenching of aluminum alloys: Property prediction by quench factor analysis,” Heat Treat. Prog., May/June, 23 – 28 (2009).

  5. G. P. Dolan and J. S. Robinson, “Residual stress reduction in 7175-T73, 6061-T6 and 2017A-T4 aluminum alloys using quench factor analysis,” J. Mater. Proc. Technol., 153, 346 – 351 (2004).

    Article  Google Scholar 

  6. A. O. Ivanova, D. K. Ryabov, V. V. Antipov, and S. V. Pakhomkin, “Possibility of application Thermo-Calc software for determining heat treatment parameters of alloy 1913 and atomization temperatures of aluminum alloys,” Aviats. Mater. Tekhnol., No. S1(43) (DOI: https://doi.org/10.18577/2071-9140-2016-0-S1-52-59).

  7. B. Milkereit and M. J. Starink, “Quench sensitivity of Al – Mg – Si alloys: a model for linear cooling and strengthening,” Mater. Design, 76, 117 – 129 (2015).

    Article  CAS  Google Scholar 

  8. Y. Hu, et al., “Precipitation modeling and validation of Al – 5% Cu – 0.4% Mn alloy using quench factor analysis,” in: Light Metals, Springer, Cham (2017), pp. 327 – 333.

  9. B. Milkereit, et al., “Continuous cooling precipitation diagrams of Al – Mg – Si alloys,” Mater. Sci. Eng. A, 550, 87 – 96 (2017).

    Article  Google Scholar 

  10. B. Milkereit, L. Giersberg, O. Kessler, and C. Schick, “Isothermal time-temperature precipitation diagram for an aluminum alloy 6005A by in situ DSC experiments,” Materials, 7, 2631 – 2649 (2014).

    Article  CAS  Google Scholar 

  11. M. Tiryakioglu and R. T. Shuey, “Modeling quench sensitivity of aluminum alloys for multiple tempers and properties: application to AA2024,” Metall. Mater. Trans. A, 41(11), 2984 – 2991 (2010).

    Article  Google Scholar 

  12. D. H. Bratland, O. Grong, H. Shercliff, et al., “Overview No. 124. Modelling of precipitation reactions in industrial processing,” Acta Mater., 45(1), 1 – 22 (1997).

    Article  CAS  Google Scholar 

  13. Yu. A. Puchkov and S. L. Berezina, “Application of the quench factor theory to predicting the properties of articles from heat hardenable aluminum alloy V91,” Metalloved. Term. Obrab. Met., No. 3, 20 – 25 (2014).

    Google Scholar 

  14. Yu. A. Puchkov, V. M. Polyanskii, and L. A. Sedova, “A study of the effect of modes of isothermal quenching on the structure and properties of aluminum alloy V-1341T,” Metalloved. Term. Obrab. Met., No. 2, 13 – 19 (2019).

  15. I. Benarieb and Yu. A. Puchkov, “Development of a method for calculating the parameters of C-curves of temperature–time–property diagrams of deformable alloys of the Al – Mg – Si system,” Zagot. Proizvod. Mashinostr., No. 2, 83 – 89 (2018).

  16. I. Benarieb, L. B. Ber., K. B. Antonov, and S. V. Sbitneva, “Tendency of development of deformable alloys of the Al – Mg – Si – (Cu) system. Part I (a review),” Aviats. Mater. Tekhnol., No. 3, 14 – 22 (2019) (DOI: 10.18577_2071-9140-2019-0-3- 14-22).

  17. N. I. Kolobnev, L. B. Ber, L. B. Khokhlatova, and D. K. Ryabov, “Structure, properties and application of alloys of the Al – Mg – Si – (Cu) system,” Metalloved. Term. Obrab. Met., No. 9, 40 – 45 (2011).

  18. G. G. Kryuchkov, O. E. Grushko, V. V. Ovchinnikova, and V. I. Popov, “Commercial production of high-technology alloy V-134 of the Al – Mg – Si system alloyed with calcium,” Metalloved. Term. Obrab. Met., No. 1, 8 – 11 (2015).

  19. G. G. Kryuchkov, V. V. Ovchinnikov, Yu. Yu. Klochkova, and V. A. Romanenko, “Structure and properties of sheets from high-technology alloy V-1341 of the Al – Mg – Si system,” Trudy VIAM, Electr. Nauch.-Tekh. Zh., No. 12(60), 03 (2017); URL: http://www.viam-works.ru (accessed 15.02.2018); DOI: 10.18577/2307-6046-2017-0-12-3-3.

  20. I. Benarieb, V. A. Romanenko, Yu. Yu. Klochkova, et al., “Use of high-technology alloy V-1341 of the Al – Mg – Si system for tubing of articles of aircraft equipment,” Trudy VIAM, Electr. Nauch.-Tekh. Zh., 11(93), 03 (2020); URL: http://www.viamworks. ru (accessed 15.02.2021); DOI: https://doi.org/10.18577/2307-6046-2020-0-11-21-30.

  21. E. N. Kablov, N. V. Dynin, I. Benarieb, et al., “Advanced aluminum alloys for soldered structures of aircraft equipment,” Zagot. Proizvod. Mashinostr., No. 4, 179 – 192 (2021).

  22. A. V. Bazhanov, I. N. Gornostaev, V. V. Stepanov, and V. D. Khodzhaev, “Prospects of application of alloys of the Al – Mg – Si system in the production of soldered bearing structures of spacecraft board equipment,” Litein. Svaroch. Proizvod., No. 11, 8 – 11 (2012).

  23. V. V. Teleshov, “Activation phenomena in heat treatment of aluminum alloys,” Tekhnol. Legk. Splavov, No. 4, 49 – 61 (2017).

  24. E. N. Kablov, E. A. Lukina, S. V. Sbitneva, et al., “Formation of metastable phases in decomposition of solid solution during artificial aging of Al-alloys,” Tekhnol. Legk. Splavov, No. 3, 7 – 17 (2016).

  25. Yu. V. Lapshin, S. I. Pakhomkin, and A. S. Fokin, “Effect of heating rate in investigation of phase transformations in aluminum alloys by DSC,” Aviats. Mater. Tekhnol., No. 2, 3 – 6 (2011).

Download references

The work has been performed within implementation of complex scientific directions “Light, High-Strength Corrosion-Resistant Weldable Alloys and Steels including those with High Fracture Toughness” and “Computer Methods for Simulating the Structure and Properties of Materials in their Creation and Service” (“Strategic Directions of Advancement of Materials and Their Reprocessing for up to 2030”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Benarieb.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 11, pp. 9 – 15, November, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benarieb, I., Duyunova, V.A., Oglodkov, M.S. et al. Quench Factor Analysis for Predicting Precipitation Hardening of Sheets from Aluminum Alloy V-1341 of the Al – Mg – Si System. Met Sci Heat Treat 63, 583–589 (2022). https://doi.org/10.1007/s11041-022-00733-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-022-00733-w

Key words

Navigation