Skip to main content
Log in

Structural Transformations in Cold-Rolled Austenitic Chromium-Nickel Steel Studied by Synchrotron X-Ray Diffraction and Peak Profile Analysis

  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of cold rolling on the structure and properties of austenitic chromium-nickel steel 12Kh18N10T is studied. X-ray diffraction analysis is performed and the microhardness of the steel is measured after rolling to different strains. The changes in the coherent scattering regions and the distortions of the crystal lattice of the steel are considered. It is shown that plastic deformation results in a mechanically induced transformation of the austenite (γ) into martensite (α′). The martensite inherits the defects formed in the process of straining of the initial phase (austenite). The data of the x-ray diffraction analysis agree with the measured microhardness of the deformed steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. G. B. Olson and M. Cohen, “A mechanism for the strain-induced nucleation of martensitic transformations,” J. Less-Common Met., 28, 107 – 118 (1972) (https://doi.org/10.1016/0022-5088(72)90173-7).

    Article  CAS  Google Scholar 

  2. J. R. Patel and M. Cohen, “Criterion for the action of applied stress in the martensitic transformation,” Acta Metall., 1(5), 31 – 538 (1953) (https://doi.org/10.1016/0001-6160(53)90083-2).

    Article  Google Scholar 

  3. Y. Tian, A. Birgenstam, and P. Hedstrom, “Comparing the deformation-induced martensitic transformation with the athermal martensitic transformation in Fe – Cr – Ni alloys,” J. Alloys Compd., 766, 131 – 139 (2018) (https://doi.org/10.1016/j.jallcom.2018.06.326).

    Article  CAS  Google Scholar 

  4. M. She, X. Liu, and G. He, “The deformation-induced martensitic and dynamic strain aging during cyclic deformation in AISI 321,” Mater. Res. Expr., 6(2), 026530 (2018) (https://doi.org/10.1088/2053-1591/aad958).

  5. M. C. Park, K. N. Kim, G. S. Shin, et al., “Effects of strain induced martensitic transformation on the cavitation corrosion resistance and incubation time of Fe – Cr – Ni – C alloys,” Wear, 274 – 275, 28 – 33 (2012) (https://doi.org/10.1016/j.wear.2011.08.011).

  6. Y. Sun, “Sliding wear behavior of surface mechanical attrition treated AISI 304 stainless steel,” Tribol. Int., 57, 67 – 76 (2013) (https://doi.org/10.1016/j.triboint.2012.07.015).

    Article  CAS  Google Scholar 

  7. A. V. Makarov, P. A. Skorynina, A. S. Yurovskikh, and A. L. Osintseva, “Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel,” Phys. Met. Metallogr., 118(12), 1225 – 1235 (2017) (https://doi.org/10.1134/S0031918X17120092).

    Article  CAS  Google Scholar 

  8. B. K. Prasad and S. V. Prasad, “Abrasion-induced microstructural changes during low stress abrasion of a plain carbon (0.5% C) steel,” Wear, 151(1), 1 – 12 (1991) (https://doi.org/10.1016/0043-1648(91)90341-Q).

  9. B. B. He, B. Hu, H.W. Yen, et al., “High dislocation density-induced large ductility in deformed and partitioned steels,” Science, 357, 6355, 1029 – 1032 (2017) (https://doi.org/10.1126/science.aan0177).

  10. G. K. Williamson and H. W. Hall, “X-ray line broadening from filed aluminum and wolfram,” Acta Metall., 1, 22 – 31 (1953) (https://doi.org/10.1016/0001-6160(53)90006-6).

    Article  CAS  Google Scholar 

  11. B. E. Warren, “X-ray studies of deformed metals,” Progr. Met. Phys., 8, 147 – 202 (1959) (https://doi.org/10.1016/0502-8205(59)90015-2).

    Article  CAS  Google Scholar 

  12. T. Ungár and A. Borbély, “The effect of dislocation contrast on x-ray line broadening: Anew approach to line profile analysis,” Appl. Phys. Lett., 69(21), 3173 – 3175 (1996) (https://doi.org/10.1063/1.117951).

    Article  Google Scholar 

  13. M. A. Krivoglaz, X-ray and Neutron Diffraction in Nonideal Crystals, Springer Berlin Heidelberg, Berlin Heidelberg (1996) (https://doi.org/10.1007/978-3-642-74291-0).

  14. G. Caglioti, A. Paoletti, and F. P. Ricci, “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nucl. Instr., 3(4), 223 – 228 (1958) (https://doi.org/10.1016/0369-643X(58)90029-X).

    Article  CAS  Google Scholar 

  15. A. R. Stokes, “A numerical fourier-analysis method for the correction of widths and shapes of lines on x-ray powder photographs,” Proc. Phys. Soc., 61(4), 382 – 391 (1948) (https://doi.org/10.1088/0959-5309/61/4/311).

    Article  CAS  Google Scholar 

  16. M. J. Dickson, “The significance of texture parameters in phase analysis by x-ray diffraction,” J. Appl. Crystallogr., 2(4), 176 – 180 (1969) (https://doi.org/10.1107/S0021889869006881).

    Article  CAS  Google Scholar 

  17. N. Forouzanmehr, M. Nili-Ahmadabadi, and M. Bönisch, “The analysis of severely deformed pure Fe structure aided by x-ray diffraction profile,” Phys. Met. Metallogr., 117(6), 624 – 633 (2016) (https://doi.org/10.1134/S0031918X16060077).

    Article  CAS  Google Scholar 

  18. T. H. Simm, P. J.Withers, J. Quinta da Fonseca, “An evaluation of diffraction peak profile analysis (DPPA) methods to study plastically deformed metals,” Mater. Des., 111, 331 – 343 (2016) (https://doi.org/10.1016/j.matdes.2016.08.09).

    Article  CAS  Google Scholar 

  19. T. Ungár, J. Gubicza, G. Ribárik, and Borbély, “Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals,” J. Appl. Crystallogr., 34(3), 298 – 310 (2001) (https://doi.org/10.1107/S0021889801003715).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Emurlaev.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 12, pp. 17 – 21, December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emurlaev, K.I., Ognev, A.Y. & Lozhkin, V.S. Structural Transformations in Cold-Rolled Austenitic Chromium-Nickel Steel Studied by Synchrotron X-Ray Diffraction and Peak Profile Analysis. Met Sci Heat Treat 63, 650–654 (2022). https://doi.org/10.1007/s11041-022-00744-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-022-00744-7

Key words

Navigation