Skip to main content
Log in

Scattering imaging of biomolecules with metallic nanoparticles: localization precision, imaging speed, and multicolor imaging capability

  • Special Section: Invited Review Paper
  • Optics Awards 2020 (OA 2020), Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Metallic nanoparticles, especially gold nanoparticles (AuNPs), have been widely used as bright optical probes for the observation and analysis of biomolecules. By continuously acquiring optical images of AuNPs bound to target molecules and analyzing their central coordinates, the behavior of a single biological molecule can be captured with high localization precision and high temporal resolution. This technique has been applied to a variety of biological studies, such as elucidating the operation mechanism of motor proteins that move forward at intervals as small as several nm, and the dynamics of lipid molecules that diffuse rapidly across biological membranes. In this review, I will focus on multicolor, high-speed, and high-precision optical imaging methods using metallic nanoparticles. These developments pave the way for a detailed understanding of the mechanisms of operation of tiny and complex biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sase, I., Miyata, H., Corrie, J.E., Craik, J.S., Kinosita, K., Jr.: Real time imaging of single fluorophores on moving actin with an epifluorescence microscope. Biophys. J . 69, 323–328 (1995)

    Article  Google Scholar 

  2. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K., Yanagida, T.: Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995)

    Article  ADS  Google Scholar 

  3. Iino, R., Koyama, I., Kusumi, A.: Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J . 80, 2667–2677 (2001)

    Article  Google Scholar 

  4. Dahan, M., et al.: Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003)

    Article  ADS  Google Scholar 

  5. Geerts, H., et al.: Nanovid tracking: a new automatic method for the study of mobility in living cells based on colloidal gold and video microscopy. Biophys. J . 52, 775–782 (1987)

    Article  Google Scholar 

  6. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K., Itoh, H.: Resolution of distinct rotational substeps by submillisecond kinetic analysis of F-1-ATPase. Nature 410, 898–904 (2001)

    Article  ADS  Google Scholar 

  7. Ando, J., Fujita, K., Smith, N.I., Kawata, S.: Dynamic SERS Imaging of cellular transport pathways with endocytosed gold nanoparticles. Nano Lett. 11, 5344–5348 (2011)

    Article  ADS  Google Scholar 

  8. Nan, X., Sims, P.A., Xie, X.S.: Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision. ChemPhysChem 9, 707–712 (2008)

    Article  Google Scholar 

  9. Ober, R.J., Ram, S., Ward, E.S.: Localization accuracy in single-molecule microscopy. Biophys. J . 86, 1185–1200 (2004)

    Article  Google Scholar 

  10. Yildiz, A., et al.: Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003)

    Article  ADS  Google Scholar 

  11. Yildiz, A., Tomishige, M., Vale, R.D., Selvin, P.R.: Kinesin walks hand-over-hand. Science 303, 676–678 (2004)

    Article  ADS  Google Scholar 

  12. DeWitt, M.A., Chang, A.Y., Combs, P.A., Yildiz, A.: Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains. Science 335, 221–225 (2012)

    Article  ADS  Google Scholar 

  13. Dunn, A.R., Spudich, J.A.: Dynamics of the unbound head during myosin V processive translocation. Nat. Struct. Mol. Biol. 14, 246–248 (2007)

    Article  Google Scholar 

  14. Minagawa, Y., et al.: Basic properties of rotary dynamics of the molecular motor enterococcus hirae V1-ATPase. J. Biol. Chem. 288, 32700–32707 (2013)

    Article  Google Scholar 

  15. Suzuki, T., Tanaka, K., Wakabayashi, C., Saita, E.-I., Yoshida, M.: Chemomechanical coupling of human mitochondrial F1-ATPase motor. Nat. Chem. Biol. 10, 930–936 (2014)

    Article  Google Scholar 

  16. Lebel, P., Basu, A., Oberstrass, F.C., Tretter, E.M., Bryant, Z.: Gold rotor bead tracking for high-speed measurements of DNA twist, torque and extension. Nat. Methods 11, 456–462 (2014)

    Article  Google Scholar 

  17. Nakamura, A., Okazaki, K.-I., Furuta, T., Sakurai, M., Iino, R.: Processive chitinase is Brownian monorail operated by fast catalysis after peeling rail from crystalline chitin. Nat. Commun. 9, 3814–3812 (2018)

    Article  ADS  Google Scholar 

  18. Anker, J.N., et al.: Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008)

    Article  ADS  Google Scholar 

  19. Iida, T., et al.: Single-molecule analysis reveals rotational substeps and chemo-mechanical coupling scheme of Enterococcus hirae V1-ATPase. J. Biol. Chem. 294, 17017–17030 (2019)

    Article  Google Scholar 

  20. Ueno, H., et al.: Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution. Biophys. J . 98, 2014–2023 (2010)

    Article  Google Scholar 

  21. Arroyo, J.O., Cole, D., Kukura, P.: Interferometric scattering microscopy and its combination with single-molecule fluorescence imaging. Nat Protoc 11, 617–633 (2015)

    Article  Google Scholar 

  22. Jacobsen, V., Stoller, P., Brunner, C., Vogel, V., Sandoghdar, V.: Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface. Opt Express 14, 405–414 (2006)

    Article  ADS  Google Scholar 

  23. Lin, Y.-H., Chang, W.-L., Hsieh, C.-L.: Shot-noise limited localization of single 20 nm gold particles with nanometer spatial precision within microseconds. Opt Express 22, 9159–9112 (2014)

    Article  ADS  Google Scholar 

  24. Thompson, R.E., Larson, D.R., Webb, W.W.: Precise nanometer localization analysis for individual fluorescent probes. Biophys. J . 82, 2775–2783 (2002)

    Article  Google Scholar 

  25. Ando, J., et al.: Single-nanoparticle tracking with angstrom localization precision and microsecond time resolution. Biophys. J . 115, 2413–2427 (2018)

    Article  Google Scholar 

  26. Isojima, H., Iino, R., Niitani, Y., Noji, H., Tomishige, M.: Direct observation of intermediate states during the stepping motion of kinesin-1. Nat. Chem. Biol. 12, 290–297 (2016)

    Article  Google Scholar 

  27. Liao, Y.-H., et al.: Monovalent and oriented labeling of gold nanoprobes for the high-resolution tracking of a single-membrane molecule. ACS Nano 13, 10918–10928 (2019)

    Article  Google Scholar 

  28. Taylor, R.W., et al.: Interferometric scattering microscopy reveals microsecond nanoscopic protein motion on a live cell membrane. Nat. Photonics 56, 123 (2019)

    Google Scholar 

  29. Ando, J., et al.: Small stepping motion of processive dynein revealed by load-free high-speed single-particle tracking. Sci. Rep. 10, 1080–1011 (2020)

    Article  ADS  Google Scholar 

  30. Ando, J., et al.: Multicolor high-speed tracking of single biomolecules with silver, gold, and silver-gold alloy nanoparticles. ACS Photonics 6, 2870–2883 (2019)

    Article  Google Scholar 

  31. Sönnichsen, C., et al.: Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 774021–774024 (2002)

    Article  Google Scholar 

  32. Wang, X., Cui, Y., Irudayaraj, J.: Single-cell quantification of cytosine modifications by hyperspectral dark-field imaging. ACS Nano 9, 11924–11932 (2015)

    Article  Google Scholar 

  33. Bingham, J.M., Willets, K.A., Shah, N.C., Andrews, D.Q., Van Duyne, R.P.: Localized surface plasmon resonance imaging: Simultaneous single nanoparticle spectroscopy and diffusional dynamics. J. Phys. Chem. C 113, 16839–16842 (2009)

    Article  Google Scholar 

  34. Fairbairn, N., Christofidou, A., Kanaras, A.G., Newman, T.A., Muskens, O.L.: Hyperspectral darkfield microscopy of single hollow gold nanoparticles for biomedical applications. Phys. Chem. Chem. Phys. 15, 4163–4168 (2013)

    Article  Google Scholar 

  35. Sagle, L.B., et al.: Single plasmonic nanoparticle tracking studies of solid supported bilayers with ganglioside lipids. J. Am. Chem. Soc. 134, 15832–15839 (2012)

    Article  Google Scholar 

  36. Link, S., Wang, Z.L., El-Sayed, M.A.: Alloy formation of gold−silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B 103, 3529–3533 (1999)

    Article  Google Scholar 

  37. Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)

    Article  Google Scholar 

  38. Zhang, Z., et al.: Quantitative evaluation of surface-enhanced raman scattering nanoparticles for intracellular ph sensing at a single particle level. Anal. Chem. 91, 3254–3262 (2019)

    Article  Google Scholar 

  39. Zhang, Z., et al.: Au-protected Ag core/satellite nanoassemblies for excellent extra-/intracellular surface-enhanced raman scattering activity. ACS Appl. Mater. Interfaces. 9, 44027–44037 (2017)

    Article  Google Scholar 

  40. Chen, H., Shao, L., Li, Q., Wang, J.: Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 42, 2679–2724 (2013)

    Article  Google Scholar 

  41. Jain, P.K., El-Sayed, M.A.: Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Nano Lett. 7, 2854–2858 (2007)

    Article  ADS  Google Scholar 

  42. Oldenburg, S.J., Averitt, R.D., Westcott, S.L., Halas, N.J.: Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998)

    Article  ADS  Google Scholar 

  43. Aćimović, S.S., Kreuzer, M.P., González, M.U., Quidant, R.: Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano 3, 1231–1237 (2009)

    Article  Google Scholar 

  44. Gunnarsson, L., et al.: Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. J. Phys. Chem. B 109, 1079–1087 (2005)

    Article  Google Scholar 

  45. Nordlander, P., Oubre, C., Prodan, E., Li, K., Stockman, M.I.: Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004)

    Article  ADS  Google Scholar 

  46. Rong, G., Wang, H., Skewis, L.R., Reinhard, B.M.: Resolving sub-diffraction limit encounters in nanoparticle tracking using live cell plasmon coupling microscopy. Nano Lett. 8, 3386–3393 (2008)

    Article  ADS  Google Scholar 

  47. Sönnichsen, C., Reinhard, B.M., Liphardt, J., Alivisatos, A.P.: A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 23, 741–745 (2005)

    Article  Google Scholar 

  48. Weller, L., et al.: Gap-dependent coupling of Ag–Au nanoparticle heterodimers using DNA origami-based self-assembly. ACS Photonics 3, 1589–1595 (2016)

    Article  Google Scholar 

  49. Wu, L., Reinhard, B.M.: Probing subdiffraction limit separations with plasmon coupling microscopy: concepts and applications. Chem. Soc. Rev. 43, 3884–3897 (2014)

    Article  Google Scholar 

  50. Ye, W., et al.: Conformational dynamics of a single protein monitored for 24 h at video rate. Nano Lett. 18, 6633–6637 (2018)

    Article  ADS  Google Scholar 

  51. Rodríguez-Fajardo, V., et al.: Two-color dark-field (TCDF) microscopy for metal nanoparticle imaging inside cells. Nanoscale 10, 4019–4027 (2018)

    Article  Google Scholar 

  52. Xiao, L., Wei, L., Cheng, X., He, Y., Yeung, E.S.: Noise-free dual-wavelength difference imaging of plasmonic resonant nanoparticles in living cells. Anal. Chem. 83, 7340–7347 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

I thank Prof. Ryota Iino (Institute for Molecular Science) and Assoc. Prof. Akihiko Nakamura (Shizuoka University) for their support and advise to proceed research related to this review article. The main work discussed in this review article was partially supported by Grants-in-Aid for Scientific Research (grant number JP18H01904 to J.A.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and the Imaging Science Project of the Center for Novel Science Initiatives, National Institutes of Natural Sciences (IS291003 to J.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ando.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ando, J. Scattering imaging of biomolecules with metallic nanoparticles: localization precision, imaging speed, and multicolor imaging capability. Opt Rev 29, 358–365 (2022). https://doi.org/10.1007/s10043-022-00738-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00738-z

Keywords

Navigation