Skip to main content
Log in

Topological properties assessment of optoelectronic architectures

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Contradictory needs for high scalable, high speed, low latency, and low-cost architectures turn researchers’ attention toward optoelectronic architectures. This is due to its ability to provide high scalability and high performance at a manageable cost, by imposing some optical links in suitable locations while designing the architecture. In this paper, the most common optoelectronic architectures are overviewed and evaluated in terms of various topological properties, namely, size, diameter, cost, bisection width, maximum and minimum node degree, and Hamiltonian path and cycle. Thus, most of these architectures are based on Optical Transpose Interconnection System (OTIS). The evaluated optoelectronic architectures in this paper are OTIS-Hypercube, Extended OTIS-n-Cube, Enhanced OTIS-Cube, OTIS-Ring, OTIS k-Ary n-Cube, OTIS-Mesh, OTIS-Mesh of Trees, OTIS Hyper Hexa-Cell, and Optical Chained-Cubic Tree. The obtained results showed the strengths and weaknesses of the mentioned optoelectronic architectures to help designers and developers to investigate and decide on the suitable architecture for their problem of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Roscigno, G. (2016). The role of distributed computing in big data science: Case studies in forensics and bioinformatics. http://elea.unisa.it:8080/xmlui/handle/10556/2309.

  2. Zhang, S., Li, X., & Wang, Y. (2020). The construction of high-performance optoelectronic interconnection network and the realization of cloud computing for traffic data recognition. Journal of Nanoelectronics and Optoelectronics, 15(7), 894–903.

    Article  Google Scholar 

  3. Sangeetha, R. G., Chandra, V., & Chadha, D. (2013). Optical interconnection reverse data vortex network: Performance analysis. Photonic Network Communications. https://doi.org/10.1007/s11107-013-0392-4

    Article  Google Scholar 

  4. Zhou, Y., He, F., Hou, N., & Qiu, Y. (2018). Parallel ant colony optimization on multi-core SIMD CPUs. Future Generation Computer Systems, 79(2), 473–487.

    Article  Google Scholar 

  5. Zhou, Y., He, F., & Qiu, Y. (2016). Optimization of parallel iterated local search algorithms on graphics processing unit. The Journal of Supercomputing, 72(6), 2394–2416.

    Article  Google Scholar 

  6. Shang, T., Zhao, P., Gao, Y., & Liu, Y. (2019). Research on topology control based on Voronoi diagram algorithm in FSO networks. Telecommunication Systems. https://doi.org/10.1007/s11235-019-00552-0

    Article  Google Scholar 

  7. Jahanshahi, M., & Bistouni, F. (2019). Reliable networking in Ethernet ring mesh networks using regular topologies. Telecommunication Systems. https://doi.org/10.1007/s11235-019-00566-8

    Article  Google Scholar 

  8. Rajala, M., & Ritala, R. (2018). Topology estimation method for telecommunication networks. Telecommunication Systems, 68, 745–759. https://doi.org/10.1007/s11235-018-0422-8

    Article  Google Scholar 

  9. Goodwin, M. J., & Moseley, A. J. (1994). The application of optoelectronic technologies to high performance electronic processor interconnects. Optical and Quantum Electronics, 26(5), S455–S470.

    Article  Google Scholar 

  10. Lu, D.-T., Ozguz, V. H., Marchand, P. J., Krishnamoorthy, A. V., Kiamilev, F., Paturi, R., Lee, S. H., & Esener, S. C. (1992). Design trade-offs in optoelectronic parallel processing systems using smart-SLMs. Optical and Quantum Electronics, 24(4), S379–S403.

    Article  Google Scholar 

  11. Marsden, G., Marchand, P., Harvey, P., & Esener, S. (1993). Optical transpose interconnection system architectures. Optics Letters, 18(13), 1083–1085.

    Article  Google Scholar 

  12. Lucas, K. T. (2009). Parallel algorithm for sorting on OTIS-ring multicomputer. In Proceedings of the 2nd Bangalore annual compute conference (pp. 1–5). ACM.https://doi.org/10.1145/1517303.1517305.

  13. Lucas, K. T., et al. (2010). Parallel enumeration sort on OTIS-Hypercube. In S. Ranka (Ed.), Contemporary Computing. IC3 Communications in Computer and Information Science. (Vol. 94). Berlin and Heidelberg: Springer.

    Google Scholar 

  14. Wang, C.-F., & Sahni, S. (2008). Optical transpose systems: Models and algorithms. In S. Rajasekaran & J. Reif (Eds.), Handbook of parallel computing: Models, algorithms and applications (pp. 99–116). Taylor & Francis Group.

    Google Scholar 

  15. Wang, C.-F., & Sahni, S. (1998). Basic operations on the OTIS-Mesh optoelectronic computer. IEEE Transactions on Parallel and Distributed Systems, 9(12), 1226–1236.

    Article  Google Scholar 

  16. Zane, F., Marchand, P., Paturi, R., & Esener, S. (1996). Scalable network architectures using the Optical Transpose Interconnection System (OTIS). In Proceedings of the second international conference on massively parallel processing using optical interconnection (pp. 114–121).

  17. Zane, F., Marchand, P., Paturi, R., & Esener, S. (2000). Scalable network architectures using the Optical Transpose Interconnection System (OTIS). Journal of Parallel and Distributed Computing, 60(5), 521–538. https://doi.org/10.1006/jpdc.2000.1627

    Article  Google Scholar 

  18. Day, K. (2004). Optical transpose k-Ary n-cube networks. Journal of Systems Architecture, 50(11), 697–705.

    Article  Google Scholar 

  19. Al-Sadi, J. (2005). An extended OTIS-Cube interconnection network. In Proceedings of the IADIS international conference on applied computing (pp. 167–172).

  20. Das, R. K. (2005). Routing and topological properties of enhanced OTIS cube. In Proceedings of ADCOM 2005. Allied Publishers.

  21. Mallick, D., & Jana, P. (2008). Parallel prefix on mesh of trees and OTIS mesh of trees. In Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2008). Las Vegas, Nevada, USA, 2 Volumes.

  22. Jana, P., & Mallick, D. (2012). OTIS-MOT: An efficient interconnection network for parallel processing. The Journal of Supercomputing, 59(2), 920–940.

    Article  Google Scholar 

  23. Mahafzah, B., Sleit, A., Hamad, N., Ahmad, E., & Abu-Kabeer, T. (2012). The OTIS hyper hexa-cell optoelectronic architecture. Computing. https://doi.org/10.1007/s00607-011-0177-5

    Article  Google Scholar 

  24. Mahafzah, B., Alshraideh, M., Abu-Kabeer, T., Ahmad, E., & Hamad, N. (2012). The optical chained-cubic tree interconnection network: Topological structure and properties. Computers & Electrical Engineering. https://doi.org/10.1016/j.compeleceng.2011.11.023

    Article  Google Scholar 

  25. Hashemi-Najafabadi, H., & Sarbazi-Azad, H. (2007). Mathematical performance modeling of adaptive wormhole routing in optoelectronic hypercubes. Journal of Parallel and Distributed Computing, 67(9), 967–980.

    Article  Google Scholar 

  26. Mahafzah, B., & Jaradat, B. (2008). The load balancing problem in OTIS-Hypercube optoelectronic architectures. Journal of Supercomputing. https://doi.org/10.1007/s11227-008-0191-3

    Article  Google Scholar 

  27. Zhao, C., Xiao, W., & Parhami, B. (2009). Load-balancing on swapped or OTIS networks. Journal of Parallel and Distributed Computing, 69(4), 389–399.

    Article  Google Scholar 

  28. Wang, C.-F., & Sahni, S. (2000). Image processing on the OTIS-Mesh optoelectronic computer. IEEE Transactions on Parallel and Distributed Systems, 2(11), 97–109.

    Article  Google Scholar 

  29. Wang, C.-F., & Sahni S. (2002). Computational geometry on the OTIS-Mesh optoelectronic computer. In Proceedings of international conference on parallel processing (pp. 501–507). Vancouver, BC, Canada: IEEE. https://doi.org/10.1109/ICPP.2002.1040907.

  30. Shafiei, T., Hoseiny-Farahabady, M. R., Movaghar, A., & Sarbazi-Azad, H. (2011). On pancyclicity properties of OTIS-Mesh. Information Processing Letters, 111(8), 353–359.

    Article  Google Scholar 

  31. Al-Adwan, A., Mahafzah, B., & Sharieh, A. (2018). Solving traveling salesman problem using parallel repetitive nearest neighbor algorithm on OTIS-hypercube and OTIS-mesh optoelectronic architectures. The Journal of Supercomputing. https://doi.org/10.1007/s11227-017-2102-y

    Article  Google Scholar 

  32. Al-Adwan, A., Sharieh, A., & Mahafzah, B. (2019). Parallel heuristic local search algorithm on OTIS hyper hexa-cell and OTIS mesh of trees optoelectronic architectures. Applied Intelligence. https://doi.org/10.1007/s10489-018-1283-2

    Article  Google Scholar 

  33. Akhtar, A. H., & Lucas, K. (2014). Comparison of communication algorithms on OTIS-HHC and OTIS-Ring parallel architectures. International Journal of Engineering and Computer Science, 3(10), 8741–8745.

    Google Scholar 

  34. Akhtar, A. H., & Lucas, K. (2014). Routing and sorting on OTIS-Hyper Hexa-Cell. International Journal of Engineering and Computer Science, 3(7), 7388–7393.

    Google Scholar 

  35. Al-Sadi, J. (2012). Topological properties of the extended OTIS-n-Cube interconnection network. The Journal of Supercomputing, 62(1), 134–149.

    Article  Google Scholar 

  36. Das, R. K. (2007). Diameter and routing in enhanced OTIS Cube. In Proceedings of the 2007 international conference on computing: Theory and applications (pp. 188–192). Kolkata, India: IEEE. https://doi.org/10.1109/ICCTA.2007.49.

  37. Day, K., & Al-Ayyoub, A. (2002). Topological properties of OTIS-Networks. IEEE Transactions on Parallel and Distributed Systems, 13(4), 359–366.

    Article  Google Scholar 

  38. Parhami, B. (2005). Swapped interconnection networks: Topological, performance, and robustness attributes. Journal of Parallel and Distributed Computing, 65(11), 1443–1452.

    Article  Google Scholar 

  39. Parhami, B. (2005). The Hamiltonicity of swapped (OTIS) networks built of Hamiltonian component networks. Information Processing Letters, 95(4), 441–445.

    Article  Google Scholar 

  40. Feng, T.-Y. (1981). A survey of interconnection networks. Computer, 14(12), 12–27. https://doi.org/10.1109/C-M.1981.220290

    Article  Google Scholar 

  41. Prakash, A., Yadav, D., & Choubey, A. (2020). A survey of multistage interconnection networks. Recent Advances in Electrical & Electronic Engineering. https://doi.org/10.2174/1872212113666190215145815

    Article  Google Scholar 

  42. Sadawarti, H., Bansal, S., & Kaur, N. (2015). A survey on multi-stage interconnection networks. International Journal of Computer Science Trends and Technology, 3(1), 143–151.

    Google Scholar 

  43. Tripathy, L., Tripathy, D., & Tripathy, C. R. (2015). Fault tolerance in interconnection network - A survey. Research Journal of Applied Sciences, Engineering and Technology, 11(2), 198–214.

    Article  Google Scholar 

  44. Qiu, K., & Das, S. K. (2003). Interconnection networks and their Eigenvalues. International Journal of Foundations of Computer Science. https://doi.org/10.1142/S0129054103001790

    Article  Google Scholar 

  45. Mahafzah, B., & Al-Zoubi, I. (2018). Broadcast communication operations for hyper hexa-cell interconnection network. Telecommunication Systems. https://doi.org/10.1007/s11235-017-0322-3

    Article  Google Scholar 

  46. Grama, A., Gupta, A., Karypis, G., & Kumar, V. (2003). Introduction to parallel computing. Addison-Wesley, Second Edition.

  47. Abdullah, M., Abuelrub, E., & Mahafzah, B. (2011). The chained-cubic tree interconnection network. International Arab Journal of Information Technology, 8(3), 334–343. http://www.ccis2k.org/iajit/PDF/vol.8,no.3/2079.pdf.

  48. Mahafzah, B., Tahboub, R., & Tahboub, O. (2010). Performance evaluation of broadcast and global combine operations in all-port wormhole-routed OTIS-Mesh interconnection networks. Cluster Computing, 13(1), 87–110. https://doi.org/10.1007/s10586-009-0117-8

    Article  Google Scholar 

  49. Tsai, C.-H., & Chen, J.-C. (2017). Diagnosable evaluation of enhanced optical transpose interconnection system network. Information Processing Letters. https://doi.org/10.1016/j.ipl.2016.10.006

    Article  Google Scholar 

  50. Awwad, A. M., & Al-Sadi, J. A. (2012). Extended OTIS-Arrangement a new efficient interconnection network. In 2012 Second International Conference on Digital Information and Communication Technology and it's Applications (DICTAP) (pp. 394–399). IEEE.

  51. Awwad, A., Haddad, B., & Kayed, A. (2010). Efficient grid on the OTIS-Arrangement network. In C. H. Hsu, L. T. Yang, J. H. Park, & S. S. Yeo (Eds.), Algorithms and architectures for parallel processing (pp. 1–10). ICA3PP 2010. Lecture Notes in Computer Science, vol 6082. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-13136-3_1.

  52. Zürl, K., & Streibl, N. (1992). Optoelectronic array interconnections. Optical and Quantum Electronics, 24(4), S405–S414.

    Article  Google Scholar 

  53. Akhgari, E., Ziaie, A., & Ghodsi, M. (2008). Sorting on OTIS-Networks. In H. Sarbazi-Azad, B. Parhami, S. G. Miremadi, & S. Hessabi (Eds.), Advances in computer science and engineering (pp. 871–875). CSICC 2008. Communications in Computer and Information Science, vol 6. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-89985-3_122.

  54. Awwad, A., Al-Ayyoub, A., & Ould-Khaoua, M. (2002). Efficient routing algorithms on the OTIS-Networks. In Proceedings of the 3rd international conference on information technology (pp. 138–144).

  55. Kumar, N., Kumar, R., Mallick, D. K., & Jana, P. K. (2010). Hamiltonicity of a general OTIS network. In K. Kant, S. V. Pemmaraju, K. M. Sivalingam, & J. Wu (Eds.), Distributed computing and networking (pp. 459–465). ICDCN 2010. Lecture Notes in Computer Science, vol 5935. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-11322-2_43.

  56. Lucas, K. T., & Jana, P. K. (2010). Parallel algorithms for finding polynomial roots on OTIS-torus. The Journal Supercomputing, 54, 139–153. https://doi.org/10.1007/s11227-009-0312-7

    Article  Google Scholar 

  57. Mahafzah, B., Serhan, S. I., & Tahboub, R. Y. (2015). Performance assessment of all-reduce communication operation in OTIS-Mesh optoelectronic architecture. International Journal of Mathematics and Computers in Simulation, 9, 103–112.http://www.naun.org/main/NAUN/mcs/2015/a302002-235.pdf.

  58. Mahafzah, B., Serhan, S. I., & Tahboub, R. Y. (2015). All-reduce communication operation in OTIS-Mesh interconnection network. In Proceedings of the 14th international conference on software engineering, parallel and distributed systems (pp. 63–70). Dubai, United Arab Emirates: World Scientific and Engineering Academy and Society.

  59. Tsai C.-H., & Chen J.-C. (2013). Diagnosable evaluation of enhanced optical transpose interconnection system networks. In R. S. Chang, L. Jain, & S. L. Peng (Eds). Advances in intelligent systems and applications (pp. 115–122). Volume 1. Smart Innovation, Systems and Technologies, vol 20. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-35452-6_14.

  60. Al-Sadi J. (2013). Implementing FEFOM load balancing algorithm on the enhanced OTIS-n-Cube topology. In Proceedings of the second international conference on advances in electronic devices and circuits (EDC 2013) (pp. 47–5).

  61. Al-Adwan, A., Zaghloul, R., Mahafzah, B., & Sharieh, A. (2020). Parallel quicksort algorithm on OTIS hyper hexa-cell optoelectronic architecture. Journal of Parallel and Distributed Computing, 141, 61–73. https://doi.org/10.1016/j.jpdc.2020.03.015

    Article  Google Scholar 

  62. Al-Haj Baddar, S., & Mahafzah, B. (2014). Bitonic sort on a chained-cubic tree interconnection network. Journal of Parallel and Distributed Computing. https://doi.org/10.1016/j.jpdc.2013.09.008

    Article  Google Scholar 

  63. Mahafzah, B., & Jaradat, B. (2010). The hybrid dynamic parallel scheduling algorithm for load balancing on chained-cubic tree interconnection networks. Journal of Supercomputing, 52(3), 224–252. https://doi.org/10.1007/s11227-009-0288-3

    Article  Google Scholar 

  64. Mahafzah, B., Alshraideh, M., Tahat, L., & Almasri, N. (2019). Topological properties assessment for hyper hexa-cell interconnection network. International Journal of Computers, 13, 115–121. http://www.naun.org/main/NAUN/computers/2019/a382007-029.pdf.

  65. Al-Adwan, A., Mahafzah, B., & Aladwan, A. (2020). Load balancing problem on hyper hexa cell interconnection network. International Journal of Advanced Computer Science and Applications, 11(10), 373–379.

    Article  Google Scholar 

  66. Li, F. (2019). On the information transmission delay of the lexicographic product of digraphs. Photonic Network Communications, 37, 187–194.

    Article  Google Scholar 

  67. Ghosh, E., Ghosh, S. K., & Rangan, C. P. (2011). On the fault tolerance and Hamiltonicity of the optical transpose interconnection system of non-Hamiltonian base graphs. https://arxiv.org/abs/1109.1706.

  68. Hennessy, J. L., & Patterson, D. A. (2012). Computer architecture: A quantitative approach (5th ed.). Elsevier.

    Google Scholar 

  69. Kaminow, I., Li, T., & Willner, A. (2010). Optical fiber telecommunications VB: systems and networks (5th ed.). Academic Press.

    Google Scholar 

  70. Almasi G., Archer C., Castanos J., Erway C., Heidelberger P., Martorell X., Moreira J., Pinnow K., Ratterman J., Smeds N., Steinmacher-burow B., Gropp W., & Toonen B. (2004). Implementing MPI on the BlueGene/L supercomputer. In 10th International Euro-Par Conference (pp. 833–845). Pisa, Italy.

Download references

Acknowledgements

The authors would like to express their deep gratitude to the anonymous referees for their valuable comments and suggestions, which improved this research work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basel A. Mahafzah.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahafzah, B.A., Al-Adwan, A.A. & Zaghloul, R.I. Topological properties assessment of optoelectronic architectures. Telecommun Syst 80, 599–627 (2022). https://doi.org/10.1007/s11235-022-00910-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00910-5

Keywords

Navigation